BETWEEN THE BIOACTIVE EXTRACTS OF EDIBLE MUSHROOMS AND PHARMACOLOGICALLY IMPORTANT NANOPARTICLES: NEED FOR THE INVESTIGATION OF A SYNERGISTIC COMBINATION - A MINI REVIEW

  • UKAEGBU CHINONSO ISHMAEL Universiti Malaysia Pahang
  • Shah Samiur Rashid
  • Jalal K C A
  • Shaheen Sarkar
  • Hazrulrizawati Abd Hamid
  • Azmi N S

Abstract

ABSTRACT
The pharmacological potential of bioactive compounds extracted from mushrooms has been studied to a reasonable level. In the same vein, the
bioactivity of nanoparticles has also been investigated and reported to be of potential pharmacological benefit. No doubt, there is a reasonable
amount of claims regarding the vast activity of the mushroom extracts and nanoparticles on the tested cell lines and microorganisms. In this paper,
a review of the recent application of bioactive compounds extracted from two edible mushrooms (Coprinus comatus and Lactarius deliciosus), as
well as some of the recently reported studies on some nanoparticles of pharmacological potentials, was carried out. In order to check for synergy in
the bioactivity of the mushroom extracts when co-administered with nanoparticles, an investigation on the synergistic application of the materials
through the encapsulation of the bioactive extracts from the mushroom onto the nanoparticle was proposed. The supposed synergy in the activity of
the extract-nanoparticle complex could hold the key to improved activity of nutraceuticals against resistant microorganisms and tumor cells.
Keywords: Coprinus comatus, Lactarius deliciosus, Nanoparticles, Synergy, Bioactive extracts.

References

REFERENCES
1. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 2008;46(8):2742-7.
2. Gursoy N, Sarikurkcu C, Solak MH, Tepe B. Evaluation of antioxidant activities of 3 edible mushrooms: Ramaria flava (Schaef.: Fr.) Quél., Rhizopogon roseolus (Corda) T.M. Fries., and Russula delica Fr. Food Sci Biotchnol 2010;19(3):691-6.
3. Lam YW, Ng TB, Wang HX. Antiproliferative and antimitogenic activities in a peptide from puffball mushroom Calvatia caelata. Biochem Biophys Res Commun 2001;289(3):744-9.
4. Kodama N, Komuta K, Nanba H. Effect of Maitake (Grifola frondosa) D-fraction on the activation of NK cells in cancer patients. J Med Food 2003;6(4):371-7.
5. Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, et al. Randomized, controlled study on adjuvant immunochemotherapy with psk in curatively resected colorectal cancer. Dis Colon Rectum 1992;35(2):123-30.
6. Lindequist U, Niedermeyer TH, Jülich WD. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2005;2(3):285-99.
7. Mothana RA, Jansen R, Jülich WD, Lindequist U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod 2000;63(3):416-8.
8. Mftah AE, Samiur SR, Alhassan FH, Al-Qubaisi MS, El Zowalaty ME, Webster TJ, et al. Physicochemical properties, cytotoxicity and antimicrobial activity of sulfated zirconia nanoparticles. Int J Nanomed 2015;10:765-74.
9. Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009;37(3-4):300-5.
10. Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME. The immunobiology of mushrooms. Exp Biol Med (Maywood) 2008;233(3):259-76.
11. Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol 2015;2015:376387.
12. Barros L, Baptista P, Ferreira IC. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem Toxicol 2007;45(9):1731-7.
13. Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspect Biol Med 2006;49(2):159-70.
14. Moro C, Palacios I, Lozano M, Arrigo MD, Guillamón E, Villares A, et al. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 2012;130(2):350-5.
15. Kohno K, Miyake M, Sano O, Tanaka-Kataoka M, Yamamoto S, Koya-Miyata S, et al. Anti-inflammatory immunomodulatory properties of 2-amino-3H-phenoxazin-3-one. Biol Pharm Bull 2008;31(10):1938-45.
16. Jose N, Ajith TA, Janardhanan KK. Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytoher Res 2004;18(1):43-6.
17. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007;117:1175-83.
18. Kim HG, Yoon DH, Kim CH, Shrestha B, Chang WC, Lim SY, et al. Ethanol extract of inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J Med Food 2007;10(1):80-9.
19. Cheung LM, Cheung PC, Ooi VE. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 2003;81(2):249-55.
20. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem 2008;56(16):7265-70.
21. Yu YS, Hsu CL, Yen GC. Anti-inflammatory effects of the roots of Alpinia pricei Hayata and its phenolic compounds. J Agric Food Chem 2009;57(17):7673-80.
22. Solak MH, Işiloğlu M, Gücin F. Macrofungi of İzmir province. Turk J Bot 1999;23:383-90.
23. Onbasili D, Celiki GY, Katircioglu H, Narin I. Antimicrobial, antioxidant activities and chemical composition of Lactarius deliciosus (L.) Collected from Kastamonu province of Turkey. (Kastamonu Bölgesinden Toplanan Lactarius deliciosus (L.)’ ın Antimikrobiyal, Antioksidan Aktiviteleri ve Kimyasal). Kastamonu Univ J Forest Fac 2015;15(1):98-103.
24. Kabir Y, Kimura S. Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 1989;35(1):91-4.
25. Ozen T, Darcan C, Aktop O, Turkekul I. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the black sea region of Turkey. Comb Chem High Throughput Screen 2011;14(2):72-84.
26. Demirbas A. Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 2001;75(4):453-7.
27. Rancic A, Kosanic M, Rankovic B, Stanojkovic T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 2016;24(3):477-84.
28. Mau JL, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 2004;87(1):111-8.
29. Jayakumar T, Thomas PA, Sheu JR, Geraldine P. In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res Int 2011;44(4):851-61.
30. Ferreira IC, Baptista P, Vilas-boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem 2007;100(4):1511-6.
31. Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal 2007;20(3-4):337-45.
32. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 2006;99(2):381-7.
33. Alvarez-Parrilla E, de la Rosa LA, Martínez NR, Aguilar GA. Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Cien Tecnol Aliment 2007;5(5):329-34.
34. Benedict RG, Brady LR. Antimicrobial activity of mushroom metabolites. J Pharm Sci 1972;61(11):1820-2.
35. Iwalokun DK, Usen BA, Otunba AA, Olukoya DK. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr J Biotechnol 2007;6(15):1732-9.
36. Yang S, Jin L, Ren X, Lu J, Meng Q. Optimization of fermentation process of Cordyceps militaris and antitumor activities of polysaccharides in vitro. J Food Drug Anal 2014;22(4):468-76.
37. Dulger B, Yilmaz F, Gucin F. Antimicrobial activity of some Lactarious species. Pharm Biol 2002;40(4):304-6.
38. Ding X, Hou Y, Hou W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydr Polym 2012;89(2):397-402.
39. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 2000;7(7):715-29.
40. Luo H, Mo M, Huang X, Li X, Zhang K. Coprinus comatus: A basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 2004;96(6):1218-24.
41. Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS Jr. Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 2001;50(1):203-4.
42. Zaidman BZ, Wasser SP, Nevo E, Mahajna J. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep 2008;35:107-17.
43. Ozalp FO, Canbek M, Yamac M, Kanbak G, Van Griensven LJ, Uyanoglu M, et al. Consumption of Coprinus comatus polysaccharide extract causes recovery of alcoholic liver damage in rats. Pharm Biol 2014;52(8):994-1002.
44. Wasser SP. Novel Coprinus comatus and Tremella mesenterica Mushroom Strains, Products and Extracts There of and Compositions Comprising Them; 2010.
23
Asian J Pharm Clin Res, Vol 10, Issue 3, 2017, 13-24
Ishmael et al.
45. Stojkovic D, Reis FS, Barros L, Glamoclija J, Ciric A, van Griensven LJ, et al. Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.Müll.) Pers. Food Chem Toxicol 2013;59:289-96.
46. Moglad E, Sadabaai AM. Screening of antimicrobial activity of wild mushrooms from Khartoum state of Sudan. Microbiol J 2012;2(2):64-9.
47. Kalaw SP, Albinto RF. Functional activities of Philippine wild strain of Coprinus comatus (O.F.Müll.: Fr.) Pers and Pleurotus cystidiosus O. K. Miller grown on rice straw based substrate formulation. Mycosphere 2014;5(5):646-55.
48. Srivastava MP, Sharma N. Antimicrobial activities of basidiocarp of some basidiomycetes strains against bacteria and fungi. J Mycol Plant Pathol 2011;41(2):332-4.
49. Small EJ, Roach M 3rd. Prostate-specific antigen in prostate cancer: A case study in the development of a tumor marker to monitor recurrence and assess response. Semin Oncol 2002;29(3):264-73.
50. Rouhana-Toubi A, Wasser SP, Agbarya A, Fares F. Inhibitory effect of ethyl acetate extract of the Shaggy Inc. cap medicinal mushroom, Coprinus comatus (Higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. Int J Med Mushrooms 2013;15(5):457-70.
51. Bourbon AI, Cerqueira MA, Vicente AA. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. J Food Eng 2016;180:110-9.
52. Couvreur P, Kante B, Grislain L, Roland M, Speiser P. Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles. J Pharm Sci 1982;71(7):790-2.
53. Levy RJ, Labhasetwar V, Song C. Nanoparticle drug delivery systems. Adv Drug Del Rev 1997;24(1):63-85.
54. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007;59(6):478-90.
55. Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42(4):337-43.
56. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded poly butyl cyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001;218:75-80.
57. Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res 2011;303(8):533-50.
58. Nelson AM, Gilliland KL, Cong Z, Thiboutot DM 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol 2006;126(10):2178-89.
59. Messenger AG, Rundegren J. Minoxidil: Mechanisms of action on hair growth. Br J Dermatol 2004;150(2):186-94.
60. Takahashi T, Kamimura A. Cyclosporin a promotes hair epithelial cell proliferation and modulates protein kinase C expression and translocation in hair epithelial cells. J Invest Dermatol 2001;117(3):605-11.
61. Patel A, Prajapati P, Boghra R. Overview on application of nanoparticles in cosmetics. Asian J Pharm Sci Clin Res 2011;1:40-55.
62. Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol 2005;50(4):R1-43.
63. Gélis C, Girard S, Mavon A, Delverdier M, Paillous N, Vicendo P. Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models. Photodermatol Photoimmunol Photomed 2003;19(5):242-53.
64. Nohynek GJ, Schaefer H. Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001;33(3):285-99.
65. Kumar P, Kulkarni PK, Srivastava A. Pharmaceutical application of nanoparticles in drug delivery system. J Chem Pharm Res 2015;7:703-12.
66. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011;3(4):1411-20.
67. Celardo I, Traversa E, Ghibelli L. Cerium oxide nanoparticles: A promise for applications in therapy. J Exp Ther Oncol 2011;9(1):47-51.
68. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine (Lond) 2013;8(9):1483-508.
69. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008;29(18):2705-9.
70. Xue Y, Luan Q, Yang D, Yao X. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 2011;115:4433-8.
71. Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (?NO). Chem Commun (Camb) 2012;48(10):4896-8.
72. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 2010;46:2736-8.
73. Perez JM, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 2008;4(5):552-6.
74. Popov AL, Popova NR, Ivanov VK, Selezneva II, Akkizov AY. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater Sci Eng 2016;68:406-13.
75. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 2006;1:142-50.
76. Merchant S, Ellison A, Fry R. Engineered oxide nanoparticles protect against neuronal damage associated with in vitro trauma. J Neurotrauma 2009;10:1105.
77. Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 2011;51(6):1155-63.
78. Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, et al. Antibody conjugated PEGylated cerium oxide nanoparticles for specific targeting of Ab aggregates modulate neuronal survival pathways. Acta Biomater 2012;8(6):2056-67.
79. Falone S, D’Angelo B, Santucci S, Benedetti E, Di Loreto S, Phani RA. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci 2009;5:167-76.
80. Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 2010;132(1):138-46.
81. Rothenberg G. Catalysis: The best of both worlds. Nat Chem 2010;2(1):9-10.
82. El-Sayed MA, Narayanan R. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 2004;4(7):1343-8.
83. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008;24(4):7354-64.
84. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 2007;41(6):615-26.
85. Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, et al. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radic Res 2011;45(3):326-35.
86. Caputo F, De Nicola M, Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochem Pharmacol 2014;92:112-30.
87. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 2009;22(4):340-9.
88. Kim J, Shirasawa T, Miyamoto Y. The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 2010;31(22):5849-54.
89. Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, et al. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 2008;129(6):322-31.
90. Clark A, Zhu A, Sun K, Petty HR. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res 2011;13(10):5547-55.
91. Brown AS, Hargreaves JS. Sulfated metal oxide catalysts. Green Chem 1999;1(1):17-20.
92. Clark JH. Solid acids for green chemistry. Acc Chem Res 2002;35(9):791-7.
93. Figueras F, Delahay G, Ensuque E, Coq B. Selective catalytic reduction of nitric oxide by-decane on Cu/Sulfated-zirconia catalysts in oxygen-rich atmosphere: Effect of sulfur and copper contents. J Catal 1998;175(1):7-15.
94. Farrera C, Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm 2015;95:3-12.
95. Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J Clin Invest 2012;122(3):787-95.
96. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al.
24
Asian J Pharm Clin Res, Vol 10, Issue 3, 2017, 13-24
Ishmael et al.
Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest 2013;123(7):3061-73.
97. Witasp E, Shvedova A, Kagan V, Fadeel B. Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol 2009;21:131-6.
98. Lundborg M, Dahlén S, Johard U, Gerde P, Jarstrand C, Camner P, et al. Aggregates of ultrafine particles impair phagocytosis of microorganisms by human alveolar macrophages. Environ Res 2006;100:197-204.
99. Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 2013;7:6997-7010.
100. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52.
101. Laverny G, Casset A, Purohit A, Schaeffer E, Spiegelhalter C, de Blay F. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol Lett 2013;217:91-101.
102. Tkach A, Yanamala N, Stanley S, Shurin M, Shurin G, Kisin E, et al. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small 2013;9:1686-90.
103. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2(8):469-78.
104. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 2009;4(7):451-6.
105. Singh A, Nie H, Ghosn B, Qin H, Kwak LW, Roy K. Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol Ther 2008;16(12):2011-21.
106. Frick S, Bacher N, Baier G, Mailänder V, Landfester K, Steinbrink K. Functionalized polystyrene nanoparticles trigger human dendritic cell maturation resulting in enhanced CD4+ T cell activation. Macromol Biosci 2012;12:1637-47.
107. Fallarini S, Paoletti T, Battaglini CO, Ronchi P, Lay L, Bonomi R, et al. Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale 2013;5(1):390-400.
108. Schanen BC, Karakoti AS, Seal S, Drake DR 3rd, Warren WL, Self WT. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 2009;3:2523-32.
109. Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Adv Drug Deliv Rev 2013;65:2087-97.
Statistics
462 Views | 443 Downloads
Citatons
How to Cite
ISHMAEL, U. C., S. S. Rashid, J. K. C. A, S. Sarkar, H. Abd Hamid, and A. N. S. “BETWEEN THE BIOACTIVE EXTRACTS OF EDIBLE MUSHROOMS AND PHARMACOLOGICALLY IMPORTANT NANOPARTICLES: NEED FOR THE INVESTIGATION OF A SYNERGISTIC COMBINATION - A MINI REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 3, Mar. 2017, pp. 13-24, doi:10.22159/ajpcr.2017.v10i3.15406.
Section
Review Article(s)