FORMULATION OF NANOPARTICLES OF TELMISARTAN INCORPORATED IN CARBOXYMETHYLCHITOSAN FOR THE BETTER DRUG DELIVERY AND ENHANCED BIOAVAILABILITY

Authors

  • Upasana Yadav Department of Biotechnology, School of Applied Sciences, Amity University, Lucknow, Uttar Pradesh, India.
  • Angshuman Ray Chowdhuri Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand, India.
  • Sumanta Kumar Sahu Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand, India.
  • Nuzhat Husain 4Department of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India.
  • Qamar Rehman Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i9.19162

Keywords:

Telmisartan, Nanoparticle, Carboxymethyl chitosan, Transmission electron microscopy, Scanning electron microscopy

Abstract

 

 Objective: In this study, we have made an attempt to the developed formulation of nanoparticles (NPs) of telmisartan (TLM) incorporated in carboxymethyl chitosan (CMCS) for the better drug delivery and enhanced bioavailability.

Materials and Methods: The NPs size and morphology were investigated by high-resolution transmission electron microscopy and field emission scanning electron microscopy, respectively. The crystal structures and surface functional groups were analyzed using X-ray diffraction pattern, and Fourier transform infrared spectroscopy, respectively.

Results: To increase the solubility of TLM by targeted delivery of the drug through polymeric NPs is an alternative efficient, option for increasing the solubility. TLM nanosuspension powders were successfully formulated for dissolution and bioavailability enhancement of the drug. We focused on evaluating the influence of particle size and crystalline state on the in vitro and in vivo performance of TLM.

Conclusion: In summary, we have developed a new approach toward the delivery of poorly water-soluble drug TLM by CMCS NPs. The particles having a good drug loading content and drug encapsulation efficiency. The cytotoxicity of the synthesized NPs is also very less.

Downloads

Download data is not yet available.

References

Kreuter J. Nanoparticles based drug delivery systems. J Control Release 1991;16:169-76.

Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 2005;25(4-5):427-37.

Krishna RS, Shivakumar GH, Gowda DV, Banerjee S. Nanoparticles: A novel colloidal drug delivery system. Indian J Pharm Educ Res 2006;40(1):15-21.

Aktas Y, Andrieux K, Alonso MJ, Calvo P, Gürsoy RN, Couvreur P, et al. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm 2005;298(2):378-83.

Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002;249(1-2):139-47.

Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005;293(1-2):271-80.

Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 2003;93(2):151-60.

Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006;27(9):2051-9.

Sheikh FA, Barakat NA, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med 2009;20(3):821-31.

Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 2001;74(1-3):317-23.

López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D. Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. J Colloid Interface Sci 2005;283(2):344-51.

Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998;15(9):1326-31.

Dodane V, Vilivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1998;1:246-53.

Felt O, Buri P, Gurny R. Chitosan: A unique polysaccharide for drug delivery. Drug Dev Ind Pharm 1998;24(11):979-93.

Yao KD, Peng T, Yin YJ, Xu MX. Microcapsules/microspheres related to chitosan. J Macromol Sci Rev Macromol Chem Phys 1995;35:155-80.

Kas HS. Chitosan: Properties, preparations and application to microparticulate systems. J Microencapsul 1997;14(6):689-711.

Muzzarelli RA, Jeuniauk C, Gooday GW. Chitin in Nature and Technology. New York: Plenum; 1986.

Sjak-Braek G, Anthonsen T, Sandford P. Chitin and Chitosan. New York: Elsevier; 1992.

Sannan T, Kurita K, Iwakura Y. Studies on chitin: Effect of deacetylation on solubility. Makromol Chem 1976;177:3589-600.

Nicol S. Life after death for empty shells. New Sci 1991;129:46-8.

Arai K, Kinumaki T, Fujita T. Toxicity of chitosan. Bull Tokai Reg Fish Lab 1968;43:89-94.

Chandy T, Sharma CP. Chitosan – As a biomaterial. Biomater Artif Cells Artif Organs 1990;18(1):1-24.

Hou WM, Miyazaki S, Takada M, Komai T. Pharmaceutical application of biomedical polymers. Part XVI. Sustained release of indomethacin from chitosan. Chem Pharm Bull 1985;33:3986-92.

Miyazaki S, Ishii K, Nadai T. Pharmaceutical application of biomedical polymers. Part IV. The use of chitin and chitosan as drug carriers. Chem Pharm Bull 1981;29:3067-9.

Kawashima Y, Handa T, Kasai A, Takenaka H, Lin SY, Ando Y. Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharm Sci 1985;74(3):264-8.

Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM. Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits. Chem Pharm Bull (Tokyo) 1988;36(10):4033-8.

Sawayanagi Y, Nambu N, Nagai T. Use of chitosan for sustained-release preparations of water-soluble drugs. Chem Pharm Bull (Tokyo) 1982;30(11):4213-5.

Shiraishi S, Imai T, Otagiri M. Controlled release of indomethacin by chitosan– polyelectrolyte complex: Optimizationand in vivo/in vitro evaluation. J Control Release 1993;25:217-25.

Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 1992;78:43-8.

Luehen HL, Lehr CM, Rentel CO, Noach AB, Boer AG, Verhoef JC, et al. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Release 1994;29:329-38.

Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 1994;11(8):1186-9.

Imai T, Shiraishi S, Saito H, Otagiri M. Interaction of indomethacin with low molecular weight chitosan and improvements of some pharmaceutical properties of indomethacin by low molecular weight chitosans. Int J Pharm 1991;67:11-20.

Pavanetto F, Genta I, Giunchedi P, Conti B, Conte U. Spray-Drying for the Preparation of Chitosan Microspheres. Proceeding International Symposium Controlled Release of Bioactive Materials. 21st ; 1994.

Sawayanagi Y, Nambu N, Nagai T. Enhancement of dissolution properties of prednisolone from ground mixtures with chitin or chitosan. Chem Pharm Bull 1983;31:2507-9.

Gallo JM, Hassan EE. Receptor-mediated magnetic carriers: Basis for targeting. Pharm Res 1988;5(5):300-4.

Hassan EE, Parish RC, Gallo JM. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res 1992;9(3):390-7.

Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994;11(9):1358-61.

Berscht PC, Nies B, Liebendörfer A, Kreuter J. Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 1994;15(8):593-600.

Yinsong W, Lingrong L, Jian W, Zhang Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol- modi We O-carboxymethyl chitosan conjugates. Carbohydr Polym 2007;69:597-606.

Wienen W, Entzeroth M, Jacobus A, Stangier J, Busch U, Ebner T. A review on telmisartan: A novel long – Angiotensin II – Receptor antagonist. Cardiovasc Durg Rev 2000;18(2):127-54.

Kothawade SN, Kadam NR, Aragade PD, Baheti DG. Formulation and charcterization of telmisartan solid dispersions. Int J Pharm Tech Res 2010;2(1):341-7.

Brahmankar DM, Sunil JB. Biopharmaceutics and Pharmacokinetics: A Treatise. 1st ed. New Delhi: Vallabh Prakashan; 2005. p. 27-30.

Christian L, Jennifer D. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;5:47-8.

Garekani HA, Sadeghi F, Badiee A, Mostafa SA, Rajabi-Siahboomi AR. Crystal habit modifications of ibuprofen and their physicomechanical characteristics. Drug Dev Ind Pharm 2001;27(8):803-9.

Nandita Das G, Sudip Das K. Formulation of Poorly Soluble Drugs. Drug Delivery Report Spring/Summer; 2006. p. 52-5.

James S, Boylan JC. Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, United States: Taylor & Francis Inc.; 2002. p. 1641-7.

Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;50(1):47-60.

Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS PharmSciTech 2006;7(3):68.

Sathiya S, Babu CS. Telmisartan alleviates nitrosative stress in turn dopaminergic degeneration in mice MPTP model of parkinsonism – Biochemical and histopathological evidences. Int J Pharm Pharm Sci 2015;7(6):97-101.

Hyma P, Chandra A, Abbulu K. Formulation and characterization of telmisartan self microemulsifying drug delivery system. Int J Pharm Pharm Sci 2014;6(1):120-5.

Patel B, Parikh RH, Swarnkar D. Enhancement of dissolution of telmisartan through use of solid dispersion technique – surface solid dispersion. J Pharm Bioallied Sci 2012;4 Suppl 1:S64-8.

Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: Drug loading and release property. Eur J Pharm Biopharm 2010;76(1):17-23.

Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the perpartion condition. Carbohydrate 2003;53(4):355-9.

Siddiqui MA, Singh G, Kashyap MP, Khanna VK, Yadav S, Chandra D, et al. Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicol In Vitro 2008;22(7):1681-8.

Published

01-09-2017

How to Cite

Yadav, U., A. R. Chowdhuri, S. K. Sahu, N. Husain, and Q. Rehman. “FORMULATION OF NANOPARTICLES OF TELMISARTAN INCORPORATED IN CARBOXYMETHYLCHITOSAN FOR THE BETTER DRUG DELIVERY AND ENHANCED BIOAVAILABILITY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 9, Sept. 2017, pp. 236-41, doi:10.22159/ajpcr.2017.v10i9.19162.

Issue

Section

Original Article(s)