ANALYSIS OF SALIVARY COMPONENTS TO EVALUATE THE PATHOGENESIS OF AUTISM IN CHILDREN

  • Geetha Arumugam University of Madras
  • Sujatha Sridharan

Abstract

Objective: Autism is a neurodevelopmental disorder affecting the cognitive and social skills with severe implications on the affected individual’s
ability to lead productive and independent life. The present study is focused on evaluating the alteration in the levels of salivary components including
antioxidants, in children with different grades of severity of autism.
Materials and Methods: Unstimulated whole saliva sample was collected from normal, and autistic children grouped as medium functioning autism
(MFA) and low functioning autism (LFA) based on childhood autism rating scale score (n-20 in each group). Concentration of protein, cholesterol,
thiocyanate (SCN¯), mucin, uric acid, lipid peroxides (LPO), reduced glutathione (GSH), α-amylase and antioxidant enzymes activity were determined
in saliva.
Results: LFA group showed elevated levels (p=0.000) of protein, SCN¯, mucin, uric acid, α-amylase and LPO when compared to MFA group and
normal children. Antioxidant enzymes, cholesterol and GSH levels were significantly decreased (p=0.000) in LFA than in MFA and normal children.
Significant elevation in the levels of SCN¯ (p=0.001) and mucin (p=0.004) was observed in LFA than in MFA. The electrophoretic pattern revealed that
protein corresponding to 52-63 kD are significantly elevated, and 63-76 kD are decreased in autistic children. Western blot of salivary glutathione-Stransferase-
2 (GST-2) showed decreased activity in LFA than in MFA and normal children.
Conclusion: The results showed that alteration in salivary components, including antioxidant enzymes, especially GST was proportional to the
severity of autism, which can act as biological marker for diagnosing autism and also saliva can be considered as a non-invasive specimen to study the
pathogenesis of autism like other biological specimen.

Keywords: Antioxidants, Autism, Glutathione-2, Low functioning autism, Medium functioning autism, Protein marker, Unstimulated saliva

Author Biography

Geetha Arumugam, University of Madras

Department of Biochemistry,

Associate Professor

References

1. Wing L, Gould J. Severe impairments of social interaction and
associated abnormalities in children: Epidemiology and classification.
J Autism Dev Disord 1979;9(1):11-29.
2. Rutter M. Incidence of autism spectrum disorders: Changes over time
and their meaning. Acta Paediatr 2005;94(1):2-15.
3. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE,
et al. The epidemiology of autism spectrum disorders. Annu Rev Public
Health 2007;28:235-58.
4. Rutter M. Aetiology of autism: Findings and questions. J Intellect
Disabil Res 2005;49:231-8.
5. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and
risk for autism. Neurosci Biobehav Rev 2008;32(8):1519-32.
6. Amado FM, Vitorino RM, Domingues PM, Lobo MJ, Duarte JA.
Analysis of the human saliva proteome. Expert Rev Proteomics
2005;2(4):521-39.
7. Weddell J, Sanders B, Jones J. Dental problems of children with
disabilities. In: McDonald R, Avery D, Dean J, editors. Dentistry for
the Child and Adolescent. 8th ed. St. Louis, Mo: Elsevier Mosby; 2004.
p. 543.
8. Medina AC, Sogbe R, Gómez-Rey AM, Mata M. Factitial oral lesions
in an autistic paediatric patient. Int J Paediatr Dent 2003;13(2):130-7.
9. Rajaneekar D, Sathyavati D, Kumar SB, Reddy JP, Abbulu K.
Evaluation of antioxidant activity of two important memory enhancing
medicinal plants Celtis timorensis and Vanda Spathulata. Asian J Pharm
Clin Res 2013;6:153-5.
10. Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive
metabolites of oxygen and nitrogen: In vitro and in vivo considerations.
Am J Physiol Regul Integr Comp Physiol 2004;286(3):R431-44.
11. Bradford MM. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal Biochem 1976;72:248-54.
12. Zak B. Simple rapid microtechnic for serum total cholesterol. Am J Clin
Pathol 1957;27:583-8.
13. Caraway WT. Determination of uric acid in serum by a carbonate
method. Am J Clin Pathol 1955;25(7):840-5.
14. Hall RL, Miller RJ, Peatfield AC, Richardson PS, Williams I,
Lampert I. A colorimetric assay for mucous glycoproteins using Alcian
Blue [proceedings]. Biochem Soc Trans 1980;8(1):72.
15. Sarosiek J, Rourk RM, Piascik R, Namiot Z, Hetzel DP, McCallum RW.
The effect of esophageal mechanical and chemical stimuli on salivary
mucin secretion in healthy individuals. Am J Med Sci 1994;308(1):23-31.
16. Bowler RG. The determination of thiocyanate in blood serum. Biochem
J 1944;38(5):385-8.
17. Bernfeld P. Enzymes of starch degradation and synthesis. In: Nord FF,
editor. Advances in Enzymology. Vol. 12. New York: Interscience
Publ.; 1951. p. 379-428.
18. Draper HH, Hadley M. Malondialdehyde determination as index of
lipid peroxidation. Methods Enzymol 1990;186:421-31.
19. Moron MS, Depierre JW, Mannervik B. Levels of glutathione,
glutathione reductase and glutathione S-transferase activities in rat lung
and liver. Biochim Biophys Acta 1979;582(1):67-78.
20. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay
of superoxide dismutase. Indian J Biochem Biophys 1984;21(2):130-2.
21. Sinha AK. Colorimetric assay of catalase. Anal Biochem
1972;47(2):389-94.
22. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods
Enzymol 1984;105:114-21.
23. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The
first enzymatic step in mercapturic acid formation. J Biol Chem
1974;249:7130-9.
24. Laemmli UK. Cleavage of structural proteins during the assembly of
the head of bacteriophage T4. Nature 1970;227(5259):680-5.
25. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins
from polyacrylamide gels to nitrocellulose sheets: Procedure and some
applications. Proc Natl Acad Sci U S A 1979;76(9):4350-4.
26. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, et al.
The proteomes of human parotid and submandibular/sublingual
gland salivas collected as the ductal secretions. J Proteome Res
2008;7(5):1994-2006.
27. Huq NL, DeAngelis A, Rahim ZH, Ung M, Lucas J, Cross KJ, et al.
Whole and parotid saliva - Protein profiles as separated on 5-20% SDSpolyacrylamide
gradient gel electrophoresis and using MALDI-TOF
mass spectrometry. Ann Dent Univ Malaya 2004;11(1):24-9.
28. Seneff S, Davidson R, Mascitelli L. Might cholesterol sulfate deficiency
contribute to the development of autistic spectrum disorder? Med
Hypotheses 2012;78(2):213-7.
29. Tierney E, Bukelis I, Thompson RE, Ahmed K, Aneja A, Kratz L, et al.
Abnormalities of cholesterol metabolism in autism spectrum disorders.
Am J Med Genet B Neuropsychiatr Genet 2006;141B(6):666-8.
30. Wang GF, Li MG, Gao YC, Fang B. Amperometric sensor used for
determination of thiocyanate with a silver nanoparticles modified
electrode. Sensors 2004;4(9):147-55.
31. Toruno JS, Van Kan H. Simultaneous determination of tobacco smoke
uptake parameters nicotine, cotinine and thiocyanate in urine, saliva and
hair, using gas chromatography –mass spectrometry for characterization
of smoking status of recently exposed subjects. Analyst 2003;128:838.
32. Conner GE, Salathe M, Forteza R. Lactoperoxidase and hydrogen
peroxide metabolism in the airway. Am J Respir Crit Care Med
2002;166:S57-61.
33. Weuffen W, Bergmann H, Blohm H, Böhland H, Hiepe T, Schönfeld P.
Thiocyanate – A biologically active ion of veterinary and medical
relevance. Berl Munch Tierarztl Wochenschr 2003;116(3-4):144-56.
34. Luepker RV, Pechacek TF, Murray DM, Johnson CA, Hund F,
Jacobs DR. Saliva thiocyanate: A chemical indicator of cigarette
smoking in adolescents. Am J Public Health 1981;71(12):1320-4.
35. Waring RH, Klovrza LV. Sulphur metabolism in autism. J Nutr Environ
Med 2000;10:25-32.
36. Miller E, Kędziora J. Effect of whole body cryotherapy on uric acid
concentration in plasma of multiple sclerosis patients. Int Rev Allergol
Clin Immunol 2011;17(1-2):20-3.
37. Perelló J, Sanchis P, Grases F. Determination of uric acid in urine,
saliva and calcium oxalate renal calculi by high-performance liquid
chromatography/mass spectrometry. J Chromatogr B Analyt Technol
Biomed Life Sci 2005;824(1-2):175-80.
38. Freedman DS, Williamson DF, Gunter EW, Byers T. Relation of serum
uric acid to mortality and ischemic heart disease. The NHANES I
Epidemiologic Follow-up Study. Am J Epidemiol 1995;141(7):637-44.
39. Kawagishi S, Fahim RE, Wong KH, Bennick A. Purification and
characterization of subunits of a high molecular weight human salivary
mucin. Arch Oral Biol 1990;35(4):265-72.
40. Slomiany BL, Fekete Z, Murty VL, Grabska M, Piotrowski J,
Yotsumoto F, et al. Regulation of buccal mucosal calcium channel
activity by salivary mucins. Int J Biochem 1993;25(9):1281-9.
41. Granger DA, Kivlighan KT, el-Sheikh M, Gordis EB, Stroud LR.
Salivary alpha-amylase in biobehavioral research: Recent developments
and applications. Ann N Y Acad Sci 2007;1098:122-44.
42. Yavuzyilmaz E, Yumak O, Akdoganli T, Yamalik N, Ozer N, Ersoy F,
et al. The alterations of whole saliva constituents in patients with
diabetes mellitus. Aust Dent J 1996;41(3):193-7.
43. Keller PS, El-Sheikh M. Salivary alpha-amylase as a longitudinal
predictor of children’s externalizing symptoms: Respiratory sinus
arrhythmia as a moderator of effects. Psychoneuroendocrinology
2009;34(5):633-43.
44. Granger DA, Kivlighan KT, Blair C, El-Sheikh M, Mize J, Lisonbee JA,
et al. Integrating the measurement of salivary α-amylase into studies of
child health, development, and social relationships. J Soc Pers Relat
2006;23(2):267-90.
45. Halliwell B. Reactive oxygen species in living systems:
Source, biochemistry, and role in human disease. Am J Med
1991;91(3C):14S-22.
46. Karincaoglu Y, Batcioglu K, Erdem T, Esrefoglu M, Genc M. The
levels of plasma and salivary antioxidants in the patient with recurrent
aphthous stomatitis. J Oral Pathol Med 2005;34(1):7-12.
47. Momen-Beitollahi J, Mansourian A, Momen-Heravi F, Amanlou M,
Obradov S, Sahebjamee M. Assessment of salivary and serum
antioxidant status in patients with recurrent aphthous stomatitis. Med
Oral Patol Oral Cir Bucal 2010;15(4):e557-61.
48. Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T. Investigation of
antioxidant enzymes in children with autistic disorder. Prostaglandins
Leukot Essent Fatty Acids 2002;67(5):341-3.
49. Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, et al.
Increased oxidative stress and altered activities of erythrocyte free
radical scavenging enzymes in autism. Eur Arch Psychiatry Clin
Neurosci 2004;254(3):143-7.
50. Rice-Evans C, Burdon R. Free radical-lipid interactions and their
pathological consequences. Prog Lipid Res 1993;32(1):71-110.
51. Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the
glutathione redox system. Cell Biochem Funct 2002;20(1):61-6.
52. Perry SW, Norman JP, Litzburg A, Gelbard HA. Antioxidants are
required during the early critical period, but not later, for neuronal
survival. J Neurosci Res 2004;78(4):485-92.
53. Meagher EA, FitzGerald GA. Indices of lipid peroxidation in vivo:Strengths and limitations. Free Radic Biol Med 2000;28(12):1745-50.
54. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH,
et al. Metabolic endophenotype and related genotypes are associated
with oxidative stress in children with autism. Am J Med Genet B
Neuropsychiatr Genet 2006;141B(8):947-56.
55. Oztürk LK, Furuncuoglu H, Atala MH, Uluköylü O, Akyüz S, Yarat A.
Association between dental-oral health in young adults and salivary
glutathione, lipid peroxidation and sialic acid levels and carbonic
anhydrase activity. Braz J Med Biol Res 2008;41(11):956-9.
56. Sailaja YR, Baskar R, Saralakumari D. The antioxidant status during
maturation of reticulocytes to erythrocytes in type 2 diabetics. Free
Radic Biol Med 2003;35(2):133-9.
57. Main PA, Angley MT, O’Doherty CE, Thomas P, Fenech M. The
potential role of the antioxidant and detoxification properties of
glutathione in autism spectrum disorders: A systematic review and
meta-analysis. Nutr Metab (Lond) 2012;9:35.
58. John DH, Richard CS. Glutathione S transferase polymorphism and
their biological consequences. Pharmacology 2000;61:154-66.
59. Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK. Novel metabolic
biomarkers related to sulfur-dependent detoxification pathways in
autistic patients of Saudi Arabia. BMC Neurol 2011;11:139.
60. Buyske S, Williams TA, Mars AE, Stenroos ES, Ming SX, Wang R,
et al. Analysis of case-parent trios at a locus with a deletion allele:
Association of GSTM1 with autism. BMC Genet 2006;7:8.
61. Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-
Santiago MF, et al. Risk of autistic disorder in affected offspring of
mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr
Adolesc Med 2007;161(4):356-61.
Statistics
457 Views | 965 Downloads
How to Cite
Arumugam, G., and S. Sridharan. “ANALYSIS OF SALIVARY COMPONENTS TO EVALUATE THE PATHOGENESIS OF AUTISM IN CHILDREN”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 7, no. 4, Sept. 2014, pp. 205-11, https://innovareacademics.in/journals/index.php/ajpcr/article/view/1931.
Section
Original Article(s)