• Sabiha Imran Department of Biotechnology, Manav Rachna International University, Faridabad, Haryana, India
  • Twinkle Gupta Department of Biotechnology, Manav Rachna International University, Faridabad, Haryana, India
  • Aarti Arora Department of Biotechnology, Manav Rachna International University, Faridabad, Haryana, India
  • Nilanjan Das Accendere Knowledge Management Services, Chennai, Tamil Nadu, India.



 Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microbes owned by different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the targeted cells, disrupting membrane possibilities, and triggering cell fatality. The availability of small cationic peptides with antimicrobial activity is a protection strategy found not only in bacteria but also in plants and animals. The antibiotics which have extensive applications in the treatment of various bacterial diseases have developed alarming resistance against them in many pathogens due to improper use besides this antibiotics have adverse side effects also. There are an extensive variety of bacteriocins made by different bacterial genera have promising alternative to antibiotics that needs to be further studied to show the no existence of undesirable effects, which must be performed both in vitro and in vivo experimental systems. Most of the bacteriocin have narrow spectrum of their activity and effective only on the related species. There is an urgent need for the identification of broad-spectrum bacteriocins isolated from the species from different habitats that can be effective against both Gram-positive and Gram-negative pathogens. In this review, we focus on the main physical and chemical characteristics of broad-spectrum bacteriocin and discuss their application as an alternative option to antibiotics.

Keywords: Bacteriocins, Antibiotics, Broad spectrum, Narrow spectrum, Antimicrobial peptides.

Author Biography

Sabiha Imran, Department of Biotechnology, Manav Rachna International University, Faridabad, Haryana, India


1. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40(3):722.
2. Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie 1988;70(3):337-49.
3. Abriouel H, Valdivia E, Martı́ M, Maqueda M, Gálvez A. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. Liquefaciens A-48-32. J Microbiol Methods 2003;55(3):599-605.
4. Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2012;2(3):50-6.
5. Jarvis B, Jeffcoat J, Cheeseman GC. Molecular weight distribution of Nisin. Biochim Biophys Acta BBA Protein Struct 1968;168(1):153-5.
6. Broadbent JR, Chou YC, Gillies K, Kondo JK. Nisin inhibits several gram-positive, mastitis-causing pathogens. J Dairy Sci 1989;72(12):3342-5.
7. Venema K, Chikindas ML, Seegers JF, Haandrikman AJ, Leenhouts KJ, Venema G, et al. Rapid and efficient purification method for small, hydrophobic, cationic bacteriocins: Purification of lactococcin B and pediocin PA-1. Appl Environ Microbiol 1997;63(1):305-9.
8. Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 1986;167(2):439-46.
9. Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59(2):171-200.
10. Balasubramanyam BV, Varadaraj MC. Cultural conditions for the production of bacteriocin by a native isolate of Lactobacillus delbruecki ssp. Bulgaricus CFR 2028 in milk medium. J Appl Microbiol 1998;84(1):97-102.
11. Sanni AI, Onilude AA, Ogunbanwo ST, Smith SI. Antagonistic activity of bacteriocin produced by Lactobacillus species from ogi, an indigenous fermented food. J Basic Microbiol 1999;39(3):189-95.
12. Larsen AG, Vogensen FK, Josephsen J. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: Purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J Appl Bacteriol 1993;75(2):113-22.
13. Sabiha I. Bacteriocin: An alternative to antibiotics. World J Pharm Res 2016;5(11):67-477.
14. Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg 1891;14(3):199-220.
15. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: Renaissance of an old concept. Int J Microbiol 2016;2016:8451728.
16. Yusuf MA, Ichwan SJ, Hamid TH. Anti-proliferative activities of purified bacteriocin from Enterococcus mundtii strain C4l10 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. Int J Pharm Pharm Sci 2015;7(2):334-7.
17. Bharti V, Mehta A, Singh S, Jain N, Ahirwal L, Mehta S. Bacteriocin: A novel approach for preservation of food. Int J Pharm Pharm Sci 2015;7(9):20-9.
18. Lewus CB, Montville TJ. Further characterization of bacteriocins plantaricin BN, bavaricin MN and pediocin A. Food Biotechnol 1992;6(2):153-74.
19. Abee T, Klaenhammer TR, Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol 1994;60(3):1006-13.
20. Liu G, Song Z, Yang X, Gao Y, Wang C, Sun B. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control 2016;62:309-16.
21. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 1998;64(2):439-45.
22. Tahara T, Oshimura M, Umezawa C, Kanatani K. Isolation, partial characterization, and mode of action of Acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl Environ Microbiol 1996;62(3):892-7.
23. Callewaert R, Holo H, Devreese B, Van Beeumen J, Nes I, De Vuyst L. Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method. Microbiology 1999;145(9):2559-68.
24. Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 2013;4(2):185-91.
25. Wright GD. Something old, something new: Revisiting natural products in antibiotic drug discovery 1. Can J Microbiol 2014;60(3):147-54.
26. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol 2014;18(10):56-60.
27. Piddock LJ. The crisis of no new antibiotics-what is the way forward? Lancet Infect Dis 2012;12(3):249-53.
28. Levy J. The effects of antibiotic use on gastrointestinal function. Am J Gastroenterol 2000;95 Suppl 1:S8-10.
29. Alanis AJ. Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res 2005;36(6):697-705.
30. Jiménez-Díaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC. Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 1993;59(5):1416-24.
31. Greenlee ML, DiNinno F, Herrmann JJ, Jaworsky C, Muthard DA, Salzmann TN. 2-naphthylcarbapenems: Broad spectrum antibiotics with enhanced potency against MRSA. Bioorg Med Chem Lett 1999;9(19):2893-6.
32. Chopra I. Glycylcyclines: Third-generation tetracycline antibiotics. Curr Opin Pharmacol 2001;1(5):464-9.
33. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, et al. The glycylcyclines. Drugs 2004;64(1):63-88.
34. Matthews SJ, Lancaster JW. Doripenem monohydrate, a broad-spectrum carbapenem antibiotic. Clin Ther 2009;31(1):42-63.
35. De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J Mol Microbiol Biotechnol 2007;13(4):194-9.
36. Ryan MP, Rea MC, Hill C, Ross RP. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 1996;62(2):612-9.
37. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 2005;3(10):777-88.
38. Blondelle SE, Lohner K. Optimization and high-throughput screening of antimicrobial peptides. Curr Pharm Des 2010;16(28):3204-11.
39. Rotem S, Mor A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta BBA Biomembr 2009;1788(8):1582-92.
40. Lohner K. Development of Novel Antimicrobial Agents: Emerging Strategies. Wymondham, UK: Horizon Scientific Press; 2001.
41. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 2009;10(6):585-606.
42. Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X. Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B 6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 2011;32(9):1917-23.
43. Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, et al. Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 2011;85(3):175-82.
44. Bionda N, Pitteloud JP, Pitteloud JP, Cudic P. Solid-phase synthesis of fusaricidin/li-f class of cyclic lipopeptides: Guanidinylation of resin-bound peptidyl amines. Pept Sci 2013;100(2):160-6.
45. Bush K, Macielag M. New approaches in the treatment of bacterial infections. Curr Opin Chem Biol 2000;4(4):433-9.
46. Livermore DM. Tigecycline: What is it, and where should it be used? J Antimicrob Chemother 2005;56(4):611-4.
47. Pharmaceutical OM. Doribax (Doripenem) Package Insert. Raritan, NJ: Ortho-McNeil Pharmaceutical; 2007.
48. Credito KL, Ednie LM, Appelbaum PC. Comparative antianaerobic activities of doripenem determined by MIC and time-kill analysis. Antimicrob Agents Chemother 2008;52(1):365-73.
49. Wagenlehner FM, Wagenlehner C, Weidner W, Naber KG. Urinary bactericidal activity of doripenem versus levofloxacin in patients with complicated urinary tract infections or pyelonephritis. Eur Urol Suppl 2008;7(3):268.
50. Bonfiglio G, Russo G, Nicoletti G. Recent developments in carbapenems. Exp Opin Investig Drugs 2002;11(4):529-44.
51. Sumita Y, Fakasawa M. Potent activity of meropenem against Escherichia coli arising from its simultaneous binding to penicillin-binding proteins 2 and 3. J Antimicrob Chemother 1995;36(1):53-64.
52. Curtis NA, Orr D, Ross GW, Boulton MG. Competition of beta-lactam antibiotics for the penicillin-binding proteins of P. aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: Comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother 1979;16(3):325-8.
53. Hayes MV, Orr DC. Mode of action of ceftazidime: Affinity for the penicillin-binding proteins of Escherichia coli K12, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 1983;12(2):119-26.
54. Waite BL, Siragusa GR, Hutkins RW. Bacteriocin inhibition of two glucose transport systems in Listeria monocytogenes. J Appl Microbiol 1998;84(5):715-21.
55. Pommer AJ, Wallis R, Moore GR, James R, Kleanthous C. Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli. Biochem J 1998;334(2):387-92.
56. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, De Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 1999;286(5448):2361-4.
57. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, et al. Specific binding of Nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 2001;276(3):1772-9.
58. Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, et al. The Nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 2004;11(10):963-7.
59. Oscáriz JC, Lasa I, Pisabarro AG. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 1999;178(2):337-41.
60. Yoneyama F, Imura Y, Ichimasa S, Fujita K, Zendo T, Nakayama J, et al. Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl Environ Microbiol 2009;75(2):538-41.
61. Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, et al. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 2009;53(8):3211-7.
62. Li M, Yoneyama F, Toshimitsu N, Zendo T, Nakayama J, Sonomoto K. Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 2013;57(8):3897-902.
63. Sahl HG, Brandis H. Efflux of low-Mr substances from the cytoplasm of sensitive cells caused by the staphylococcin-like agent Pep 5. FEMS Microbiol Lett 1983;16(1):75-9.
465 Views | 421 Downloads
How to Cite
Imran, S., T. Gupta, A. Arora, and N. Das. “A COMPARATIVE STUDY OF ANTIMICROBIAL PROFILE HAVING BROAD SPECTRUM BACTERIOCINS AGAINST ANTIBIOTICS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 9, Sept. 2017, pp. 44-47, doi:10.22159/ajpcr.2017.v10i9.19447.
Review Article(s)