FORMULATION AND EVALUATION OF ISORHAMNETIN LOADED POLY LACTIC-CO-GLYCOLIC ACID NANOPARTICLES


Kandakumar Settu, Manju Vaiyapuri

Abstract


 

 Objective: The aim of the present study was formulation and evaluation of isorhamnetin loaded poly lactic-co-glycolic acid (PLGA) polymeric nanoparticles (NPs).

Methods: The present study was designed to incorporate the isorhamnetin in PLGA formulation by double emulsion solvent evaporation method, which offers a dynamic and flexible technology for enhancing drug solubility due to their biphasic characteristic, variety in design, composition and assembly. Synthesized isorhamnetin-PLGA NPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and particle size analyzer. We tested the efficacy of isorhamnetin-PLGA NPs in HepG2 cell lines.

Results: From the FTIR result, we concluded that -C-N-, -C=C-, N-H, C-N, N-O, O-H, and C-H are the functional groups present in isorhamnetin-PLGA NPs, SEM image shows spherical shape of particles. The particle size analysis result shows 255-342 nm range of particles. Isorhamnetin-PLGA NPs significantly enhanced (p<0.05) the antiproliferative effect when compared to the plain drug.

Conclusion: This study concluded that the newly formulated NP drug delivery systems of isorhamnetin provided an insight into the therapeutic effectiveness of the designed formulation for the treatment of chemotherapy.


Keywords


Isorhamnetin, Poly lactic-co-glycolic acid, W/O/W emulsion, Antiproliferative activity, HepG2.

| PDF |

References


Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70(1-2):1-20.

Mohanraj J, Chen Y. Nanoparticles - A review. Trop J Pharm Res 2006;5(1):561-73.

Rohit M, Showkat R, Saima A. Polymeric nanoparticles for improved bioavailability of cilnidipine. Int J Pharm Pharm Sci 2017;9(4):129-39.

Martin F, Grove C. Microfabricated drug delivery systems: Concepts to improve clinical. Biomed Micro 2001;3:97-108.

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15.

Kini S, Bahadur D, Panda D. Mechanism of anti-cancer activity of benomyl loaded nanoparticles in multidrug resistant cancer cells. J Biomed Nanotechnol 2015;11(5):877-89.

Hu CM, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 2009;10(8):836-41.

Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21(23):2475-90.

Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release 2000;68(3):419-31.

Feng SS, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem 2004;11(4):413-24.

Li X, Xu Y, Chen G, Wei P, Ping Q. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. Drug Dev Ind Pharm 2008;34(1):107-15.

Rungsinee P, Wantida C, Songyot A. Curcumin-loaded multi-valent ligands conjugated-nanoparticles for anti-inflammatory activity. Int J Pharm Pharm Sci 2015;7(4):203-8.

Budhian A, Siegel SJ, Winey KI. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 2005;22(7):773-85.

Peng T, Cheng SX, Zhuo RX. Synthesis and characterization of poly-alpha, beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers. J Biomed Mater Res A 2006;76(1):163-73.

Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J Control Release 1999;57(2):171-85.

Quintanar-Guerrero D, Ganem-Quintanar A, Allémann E, Fessi H, Doelker E. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D,L-lactic acid) nanoparticles prepared by an emulsion-diffusion technique. J Microencapsul 1998;15(1):107-19.

Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allémann E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 2003;55(1):115-24.

Avgoustakis K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: Preparation, properties and possible applications in drug delivery. Curr Drug Deliv 2004;1(4):321-33.

Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011;3(3):1377-97.

Muller H, Petersen D, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007;59(6):522-30.

Wissing S, Müller R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int J Pharm 2002;242(1-2):377-9.

Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007;59(6):427-43.

Pennington J. Food composition databases for bioactive food components. J Food Compost Anal 2002;15:419-34.

Saleh NA, Mansour RM, Markham KR. An acylated isorhamnetin glycoside from Aerva javanica. Phytochemistry 1990;29(4):1344-5.

Park JC, Young HS, Yu YB, Lee JH. Isorhamnetin sulphate from the leaves and stems of Oenanthe javanica in Korea. Planta Med 1995;61(4):377-8.

Ma G, Yang C, Qu Y, Wei H, Zhang T, Zhang N. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells. Chem Biol Interact 2007;167(2):153-60.

Lee K, Kwon M, Baek I, Kim H, Lee H, Park H, et al. Ant proliferation effects of isorhamnetin isolated from Persicaria thunbergii on cancer cell lines. Nat Prod Sci 2006;12:214-26.

Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 2008;469(2):209-19.

Rawat S, Malviya N, Motwani S. Smart biodegradable polymeric nanoparticles and their applications: A review. Indian Drugs 2008;45(8):601-5.

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75(1):1-18.

Grillo R, Pereira Ado E, de Melo NF, Porto RM, Feitosa LO, Tonello PS, et al. Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water. J Hazard Mater 2011;186(2-3):1645-51.

Osman E, Eid M, Khattab H, Mohmoud D. In vitro cytotoxicity of biosynthesized Ag/CS NP against MCF7, PC3 and A549 cancer cell lines. Int J Pharm Res 2015;8:1011-7.

Anggraeni R, Hadisahputra S, Silalahi J. Combinational effects of ethyl acetate extract of Zanthoxylum acanthopodium DC. With doxorubicin on T47D breast cancer cells. Int J Pharm Res 2015;7:2032-5.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63.

Dai WG, Dong LC, Song YQ. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 2007;342(1-2):201-7.

Amrutkar JR, Gattani SG. Chitosan-chondroitin sulfate based matrix tablets for colon specific delivery of indomethacin. AAPS PharmSciTech 2009;10(2):670-7.

Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm 2007;329(1-2):142-9.

Nayak B, Panda AK, Ray P, Ray AR. Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J Microencapsul 2009;26(2):154-65.

Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 1998;87(11):1305-7.

Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 1998;50(1-3):31-40.

Surolia R, Pachauri M, Ghosh PC. Preparation and characterization

of monensin loaded PLGA nanoparticles: In vitro anti-malarial activity against Plasmodium falciparum. J Biomed Nanotechnol 2012;8(1):172-81.

Bilati U, Allemann E, Doelker E. Poly (D, L-lactide-coglycolide) protein-loaded nanoparticles prepared by the double emulsion method-processing and formulation issues for enhanced entrapment efficiency. J Microencapsul 2005;22:205-214.

Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 2008;125(3):193-209.

Prateek J, Mradul T, Nitesh K, Venkata R, Udupa N. Preparation and evaluation of decitabine loaded liposomes for effective chemotherapy. Int J Pharm Res 2016;9(9):208-13.




About this article

Title

FORMULATION AND EVALUATION OF ISORHAMNETIN LOADED POLY LACTIC-CO-GLYCOLIC ACID NANOPARTICLES

Keywords

Isorhamnetin, Poly lactic-co-glycolic acid, W/O/W emulsion, Antiproliferative activity, HepG2.

DOI

10.22159/ajpcr.2017.v10i11.19918

Date

01-11-2017

Additional Links

Manuscript Submission

Journal

Asian Journal of Pharmaceutical and Clinical Research
Vol 10 Issue 11 November 2017 Page: 177-181

Print ISSN

0974-2441

Online ISSN

2455-3891

Statistics

20 Views | 61 Downloads

Authors & Affiliations

Kandakumar Settu
Ph.D., Research Scholar Department of Biochemistry, Periyar University, Salem, Tamilnadu-11.
India

Manju Vaiyapuri
Assistant Professor Department of Biochemistry, Periyar University, Salem, Tamilnadu-11.
India


Article Tools


Email this article (Login required)
Email the author (Login required)

Refbacks

  • There are currently no refbacks.