IDENTIFICATION OF AMPC Î’-LACTAMASE-PRODUCING CLINICAL ISOLATES OF ESCHERICHIA COLI

Authors

  • Tanushree B Gupta Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.
  • Malini Shariff Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.
  • Thukral Ss Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.
  • THUKRAL SS Department of Microbiology & Immunology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman.

DOI:

https://doi.org/10.22159/ajpcr.2017.v10i12.21648

Keywords:

Nil, Escherichia coli, Nil, Inhibitor (Boronic acid)-based test, Isoelectric focusing

Abstract

 

 Objective: Indiscriminate use of β-lactam antibiotics has resulted in the emergence of β-lactamase enzymes. AmpC β-lactamases, in particular, confer resistance to penicillin, first-, second-, and third-generation cephalosporins as well as monobactams and are responsible for antibiotic resistance in nosocomial pathogens. Therefore, this study was undertaken to screen nosocomial Escherichia coli isolates for the presence and characterization of AmpC β-lactamases. The study also envisaged on the detection of inducible AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) in AmpC β-lactamase-producing E. coli.

Methods: A total of 102 clinical isolates of E. coli, were subjected to cefoxitin screening, and screen-positive isolates were further subjected to inhibitor-based detection method, phenotypic confirmatory test, disc antagonism test, polymerase chain reaction (PCR), and isoelectric focusing (IEF).

Results: In this study, 33% of E. coli were resistant to cefoxitin, of which 35% were found to be positive for AmpC β-lactamase by inhibitor-based phenotypic test. Of the AmpC-positive isolates, 83% were positive for ESBLs, whereas 25% were producing inducible AmpC β-lactamases. PCR and IEF showed CIT and EBC types of AmpC β-lactamases present in the tested isolates.

Conclusion: Our study showed the presence of inducible AmpC enzymes and ESBLs in E. coli isolates and PCR identified more isolates to be AmpC producers.

Downloads

Download data is not yet available.

Author Biographies

Tanushree B Gupta, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.

Scientist

Hopkirk Research Institute

AgResearch

Palmerston North

New Zealand

Malini Shariff, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.

Scientist

Hopkirk Research Institute

AgResearch

Palmerston North

Thukral Ss, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Vijay Nagar Marg, Delhi, India.

Professor

THUKRAL SS, Department of Microbiology & Immunology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman.

Professor

Retired

References

Jones RN. Resistance patterns among nosocomial pathogens: Trends over the past few years. Chest 2001;119 2 Suppl:397S-404.

Egervärn M, Englund S, Ljunge M, Wiberg C, Finn M, Lindblad M, et al. Unexpected common occurrence of transferable extended spectrum cephalosporinase-producing Escherichia coli in Swedish surface waters used for drinking water supply. Sci Total Environ 2017;587-588:466-72.

Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002;46(1):1-11.

Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 2009;53(1):146-9.

Pitout JD. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front Microbiol 2012;3:9.

Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22(1):161-82.

Tracz DM, Boyd DA, Bryden L, Hizon R, Giercke S, Van Caeseele P, et al. Increase in ampC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin-resistant Escherichia coli as determined by RT-PCR. J Antimicrob Chemother 2005;55(5):768-72.

Munier GK, Johnson CL, Snyder JW, Moland ES, Hanson ND, Thomson KS. Positive extended-spectrum-beta-lactamase (ESBL) screening results may be due to AmpC beta-lactamases more often than to ESBLs. J Clin Microbiol 2010;48(2):673-4.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45(4):493-6.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2007. p. 17.

Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp. Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43(8):4163-7.

Yan JJ, Ko WC, Jung YC, Chuang CL, Wu JJ. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. J Clin Microbiol 2002;40(9):3121-6.

Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002;40(6):2153-62.

Mathew A, Harris AM, Marshall MJ, Ross GW. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol 1975;88(1):169-78.

Pascual V, Alonso N, Simó M, Ortiz G. Bloodstream infections caused by Escherichia coli producing AmpC ß-lactamases: Epidemiology and clinical features. Eur J Clin Microbiol Infect Dis 2016;35(12):1997-2003.

Manyahi J, Moyo SJ, Tellevik MG, Ndugulile F. Detection of CTX-M-15 beta-lactamases in Enterobacteriaceae causing hospital-and community-acquired urinary tract infections as early as 2004, in Dar es Salaam, Tanzania. BMC Infect Dis 2017;17(1):282.

Ahn JY, Ann HW, Jeon Y. The impact of production of extended-spectrum ß-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea. BMC Infect Dis 2017;17(1):327.

Akinyemi KO, Iwalokun BA, Oyefolu AO, Fakorede CO. Occurrence of extended-spectrum and AmpC ß-lactamases in multiple drug resistant Salmonella isolates from clinical samples in Lagos, Nigeria.

Infect Drug Resist 2017;10:19-25.

Sandhiya R, Lakshmi PR, Esthermary S. Antibiotic susceptibility pattern and ESBL prevalence in Escherichia coli isolates from pus samples in a tertiary care hospital. Int J Pharm Pharm Sci 2015;7(3):263-4.

Jain S, Walia G, Malhotra R. Prevalence and antimicrobial susceptibility pattern of ESBL producing gram negative bacilli in 200 cases of urinary tract infections. Int J Pharm Pharm Sci 2014;6(10):210-1.

da Silva Dias RC, Borges-Neto AA, D’Almeida Ferraiuoli GI, de-Oliveira MP, Riley LW, Moreira BM. Prevalence of AmpC and other beta-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagn Microbiol Infect Dis 2008;60:79-87.

Singh SK, Seema K, Gupta M. Detection of AmpC β-lactamase and adherence factors in uropathogenic Escherichia coli isolated from aged patients. Microb Pathog 2016;100:293-8.

Salamat S, Ejaz H, Zafar A, Javed H. Detection of AmpC ß-lactamase producing bacteria isolated in neonatal sepsis. Pak J Med Sci 2016;32(6):1512-6.

Kahraman BB, Siğirci BD, Celik B. Detection of extended-spectrum β-lactamase and AmpC β-lactamase producing Escherichia coli isolates from chickens. Vet Fakülte Derg 2016;22(4):591-6.

Arora S, Bal M. AmpC beta-lactamase producing bacterial isolates from Kolkata hospital. Indian J Med Res 2005;122(3):224-33.

Singhal S, Mathur T, Khan S, Upadhyay DJ, Chugh S, Gaind R, et al. Evaluation of methods for AmpC beta-lactamase in gram negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 2005;23(2):120-4.

Singh RM, Pal NK, Sarkar S, Gupta MS. Surveillance on extended spectrum [beta]-lactamase and AmpC [beta]-lactamase producing gram negative isolates from nosocomial infections. Arch Clin Microbiol 2012;3(3):1-7.

Chakraborty A, Adhikari P, Shenoy S, Saralaya V. Characterization of plasmid mediated AmpC producing Escherichia coli clinical isolates from a tertiary care hospital in South India. Indian J Pathol Microbiol 2014;57(2):255-8.

Kaur DC, Puri JS, Kulkarni SS, Jayawant A. Prevalence of AmpC Î’-lactamases in clinical isolates of E. coli from a tertiary care rural hospital. Int J Pharm Pharm Sci 2015;7(6):165-8.

Ding H, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. Eur J Clin Microbiol Infect Dis 2008;27(10):915-21.

Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Böttger EC, et al. Detection of AmpC beta-lactamase in Escherichia coli: Comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 2011;49(8):2924-32.

Ingti B, Paul D, Maurya AP, Bora D, Chanda DD, Chakravarty A, et al. Occurrence of bla DHA-1 mediated cephalosporin resistance in Escherichia coli and their transcriptional response against cephalosporin stress: A report from India. Ann Clin Microbiol Antimicrob 2017;16(1):1-8.

Woodford N, Reddy S, Fagan EJ, Hill RL, Hopkins KL, Kaufmann ME, et al. Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. J Antimicrob Chemother 2007;59(1):102-5.

Barua T, Shariff M, Thukral SS. Detection and characterization of AmpC B-Lactamases in Indian clinical isolates of Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. Univers J Microbiol Res 2013;1(2):15-21.

Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM, Simor AE, et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 2005;49(1):358-65.

Pitout JD, Gregson DB, Church DL, Laupland KB. Population-based laboratory surveillance for AmpC β-lactamase producing Escherichia coli, Calgary. Emerg Infect Dis 2007;13(3):443-8.

Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother 2004;48(2):533-7.

Tenover FC, Emery SL, Spiegel CA, Bradford PA, Eells S, Endimiani A, et al. Identification of plasmid-mediated AmpC β-lactamases in Escherichia coli, Klebsiella spp., and Proteus species can potentially improve reporting of cephalosporin susceptibility testing results. J Clin Microbiol 2009;47(2):294-9.

Hussain M, Hasan F, Shah AA, Hameed A, Jung M, Rayamajhi N, et al. Prevalence of class A and AmpC b-lactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn J Infect Dis 2011;64(3):249-52.

Basavaraju A, Muttaraju P. Detection of plasmid-mediated Ampc β-lactamases among E. coli and Klebsiella pneumoniae by multiplex PCR. Ann Pathol Lab Med 2016;3(3):230-6.

Navarro F, Perez-Trallero E, Marimon JM, Aliaga R, Gomariz M, Mirelis B. CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999-December 2000). J Antimicrob Chemother 2001;48(3):383-9.

Miró E, Mirelis B, Navarro F, Matas L, Giménez M, Rabaza C. Escherichia coli producing an ACC-1 class C β-lactamase isolated in Barcelona, Spain. Antimicrob Agents Chemother 2005;49(2):866-7.

Li Y, Li Q, Du Y, Jiang X, Tang J, Wang J, et al. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese university hospital from 2003 to 2005: First report of CMY-2-type AmpC β-lactamase resistance in China. J Clin Microbiol 2008;46(4):1317-21.

Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48(10):3720-8.

Sinha P, Sharma R, Rishi S, Sharma R, Sood S, Pathak D. Prevalence of extended spectrum beta lactamase and AmpC beta lactamase producers among Escherichia coli isolates in a tertiary care hospital in Jaipur. Indian J Pathol Microbiol 2008;51(3):367-9.

Karkaba A, Grinberg A, Benschop J, Pleydell E. Characterisation of extended spectrum β-lactamase and AmpC β-lactamase-producing Enterobacteriaceae isolated from companion animals in New Zealand. N Z Vet J 2016;65(2):105-12.

Yaici L, Haenni M, Métayer V, Saras E, Zekar FM, Ayad M, et al. Spread of ESBL/AmpC-producing Escherichia coli and Klebsiella pneumoniae in the community through ready-to-eat sandwiches in Algeria. Int J Food Microbiol 2017;245:66-72.

Published

01-12-2017

How to Cite

Gupta, T. B., M. Shariff, T. Ss, and T. SS. “IDENTIFICATION OF AMPC Î’-LACTAMASE-PRODUCING CLINICAL ISOLATES OF ESCHERICHIA COLI”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 12, Dec. 2017, pp. 357-61, doi:10.22159/ajpcr.2017.v10i12.21648.

Issue

Section

Original Article(s)