Nanoparticles are particles having a size range of 1 and 100 nanometers, defined as a small object behaving as a complete unit with respect to the drug transport and therapeutic properties. They have several advantages such as improvement in the intracellular infiltration, enhanced hydrophobic solubility, and circulation time of the drug. They reduce non-specific uptake and side effects of the conventional drug delivery systems. Nanoparticles offer more effective and convenient routes of administration (oral, pulmonary, parenteral, and transdermal) and used for drug delivery for treatment of cancer, diabetes, pain, asthma, allergy, infections, and so on. They allow targeted delivery and controlled release of the drug. Further research on their mechanism of action to meet better stability of nanoparticles in the biological system could be done.

Keywords: Nanoparticles, Drug Delivery, Targeted Delivery, Bioavailability, Stability


1. Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015;4:1-3.
2. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. J Proc Natl Acad Sci USA 1999;96:13611-4.
3. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Sadri Z, Ghanizadeh F, et al. Nanotechnology and pediatric cancer: Prevention, diagnosis and treatment. Iran J Ped Hematol Oncol 2015;5:233-48.
4. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761-9.
5. Banyal S, Malik P, Tuli HS, Mukherjee TK. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr Opin Pulm Med 2013;19:289-97.
6. Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;17:585-94.
7. Singh S, Pandey VK, Tewari PR, Agarwal V. Nanoparticle based drug delivery system: Advantages and applications. Indian J Sci Technol 2011;4:177-80.
8. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009;6:43-51.
9. Nagavarma BV, Yadav KS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res 2012;5:16-23.
10. Abhilash M. Potential applications of nanoparticles. Int J Pharm Bio Sci 2010;1:1-12.
11. Vineela CH, Sailaja KK. Preparation of ibuprofen-loaded eudragit S100 nanoparticles by the solvent evaporation technique. Int J Pharm Sci Res 2014;5:375-84.
12. Liu J, Qiu Z, Wang S, Zhou L, Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater 2010;5:065002.
13. du Toit LC, Pillay V, Choonara YE, Iyuke SE. Formulation and evaluation of a salted-out isoniazid-loaded nanosystem. AAPS PharmSciTech 2008;9:174-81.
14. Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded neem oil for topical treatment of acne. J Acute Dis 2013;2:282-6.
15. Pouretedal HR. Preparation and characterization of azithromycin nano drug using solvent/anti-solvent method. Int Nano Lett 2014;4:103.
16. Xu J, Xu B, Shou D, Xia X, Hu Y. Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 2015;7:1850-70.
17. Akbari Z, Amanlou M, Karimi-Sabet J, Golestani A, Niasar MS. Haracterization of carbamazepine-loaded solid lipid nanoparticles prepared by rapid expansion of supercritical solution. Trop J Pharm Res 2014;13:1955-61.
18. Ma H, Luo M, Sanyal S, Rege K, Dai LK. The one-step Pickering emulsion polymerization route for synthesizing organic-inorganic nanocomposite particles. Materials 2010;3:1186-202.
19. Landfester K, Musyanovych A. Hydrogels in miniemulsions. Adv Polym Sci 2010;234:39-63.
20. Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 2012;5:397-417.
21. Mehrotra A, Pandit JK. Preparation and characterization and biodistribution studies of lomustine loaded PLGA nanoparticles by interfacial deposition method. J Nanomed Biother Discov 2015;5:1-10.
22. Balasubramanian J, Narayan N, Pragadeesh K. Biodegradable PEG nanoparticles for colorectal cancer using irinotecan as anticancer agent. Int J Pharm Pharm Sci 2014;6:50-4.
23. Amirah MG, Amirul AA, Wahab HA. Formulation and characterization of rifampicin-loaded P(3HB-co-4HB) nanoparticles. Int J Pharm Pharm Sci 2014;6:140-6.
24. Vandervoort J, Ludwig A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: A factorial design study. Int J Pharm 2002;238:77-92.
25. Ubrich N, Bouillot P, Pellerin C, Hoffman M, Maincent P. Preparation and characterization of propranolol hydrochloride nanoparticles: A comparative study. J Control Release 2004;97:291-300.
26. Catarina PR, Ronald JN, Antonio JR. Nano capsulation 1 method of preparation of drug-loaded polymeric nanoparticles. Nanotech Biol Med 2006;2:8-21.
27. Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 2001;47:99-112.
28. Takeuchi H, Yamamoto Y. Mucoadhesive nanoparticulate system for peptide drug delivery. Adv Drug Deliv Rev 2001;47:39-54.
29. Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: Effect of formulation variables on size, drug recovery and release kinetics. J Control Release 2002;83:389-400.
30. Fessi H, Puisieux F, Devissaguet JP, Ammoury N. Nanocapsule formation by interfacial deposition following solvent displacement. Int J Pharm 1989;55:R1-4.
31. York P. Strategies for particle design using supercritical fluid technologies. Pharm Sci Technolo Today 1999;2:430-40.
32. Kawashima Y. Panoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 2001;47:1-2.
33. Ekman B, Sjöholm I. Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique. J Pharm Sci 1978;67:693-6.
34. Lowe PJ, Temple CS. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: Protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 1994;46:547-52.
35. Prasad RJ, Geckeler KE. Polymer nanoparticles: Preparation techniques and size control parameters. Prog Polym Sci 2011;36:887-913.
36. Puig JE. Microemulsion polymerization (oil-in water). Polym Mater Encyclopedia 1996;94:4333-41.
37. Gallardo M, Couarraze G, Denizot B, Treupel L, Couvreur P, Puisieux F. Study of the mechanisms of formation of nanoparticles and nanocapsules of poly(isobutyl-2-cyanoacrylate). Int J Pharm 1993;100:55-64.
38. Aboubakar M, Puisieux F, Couvreur P, Deyme M, Vauthier C. Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J Biomed Mater Res 1999;47:568-76.
39. Nimesh S. 3-tools and techniques for physico-chemical characterization of nanoparticles. Gene Ther 2013;43-63.
40. Pal LS, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci 2011;1:228-34.
41. Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J Control Release 2001;70:353-63.
42. Pangi Z, Beletsi A, Evangelatos K. PEG-ylated nanoparticles for biological and pharmaceutical application. Adv Drug Deliv Rev 2003;24:403-19.
43. Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010;188:759-68.
44. Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: A new platform for nanomedicine. Int J Pharm 2009;379:201-9.
45. Heuer-Jungemann A, El-Sagheer AH, Lackie PM, Brown T, Kanaras AG. Selective killing of cells triggered by their mRNA signature in the presence of smart nanoparticles. Nanoscale 2016;8:16857-61.
46. Lacoeuille F, Garcion E, Benoit JP, Lamprecht A. Lipid nanocapsules for intracellular drug delivery of anticancer drugs. J Nanosci Nanotechnol 2007;7:4612-7.
47. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51.
48. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016;10:2436-46.
49. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007;2:681-93.
50. Kyriazi ME, Jungemann AH, Kanaras AG. How can nano-delivery systems selectively kill cancerous cells? Ther Deliv 2017;4:171-3.
51. Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine 2009;4:115-22.
52. Zhang Y, Huang Y, Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014;15:862-71.
53. Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006;5:561-73.
54. Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv 2004;1:361-76.
55. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016;235:34-47.
56. Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology 2015;26:495103.
57. Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108-19.
58. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol 2014;12:1605-10.
59. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005;172:1487-90.
60. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 2004;54:761-6.
61. Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013;65:822-32.
62. Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 2011;32:9826-38.
63. Bisht S, Feldmann G, Koorstra JB, Mullendore M, Alvarez H, Karikari C, et al. In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther 2008;7:3878-88.
64. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 2004;20:769-83.
65. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 2013;5:213ra167.
66. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2010;27:247-59.
67. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:205-18.
68. Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles,
nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2007;2:147-57.
69. Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 2004;57:251-61.
70. Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J Control Release 2000;66:115-26.
71. Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 2008;60:757-67.
72. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53:283-318.
73. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010;18:1650-6.
74. Kayser O, Olbrich C, Croft SL, Kiderlen AF. Formulation and biopharmaceutical issues in the development of drug delivery systems for antiparasitic drugs. Parasitol Res 2003;90 Suppl 2:S63-70.
75. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000;45:77-83.
76. Pandey R, Khuller GK. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chemother 2004;54:266-8.
77. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci 2014;15:5852-73.
78. Junise V, Saraswathi R. Development and characterization of inhaled chitosan nanoparticles loaded with isoniazid. J Pharmal Technol Res Manage 2014;2:159-70.
79. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B, et al. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 2003;52:981-6.
80. Varshosaz J, Ghaffari S, Mirshojaei SF, Jafarian A, Atyabi F, Kobarfard F, et al. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. Biomed Res Int 2013;2013:136859.
81. Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CC, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 2014;10:2643-52.
82. Yoo D, Guk K, Kim H, Khang G, Wu D, Lee D. Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 2013;450:87-94.
83. Zhao T, Chen H, Dong Y, Zhang J, Huang H, Zhu J, et al. Paclitaxel-loaded poly(glycolide-co-e-caprolactone)-b-D-a-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy. Int J Nanomedicine 2013;8:1947-57.
84. Trapani A, Di Gioia S, Ditaranto N, Cioffi N, Goycoolea FM, Carbone A, et al. Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 2013;447:115-23.
85. Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013;6:390-6.
86. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010;29:596-609.
87. Vandervoort J, Ludwig A. Ocular drug delivery: Nanomedicine applications. Nanomedicine (Lond) 2007;2:11-21.
88. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J Control Release 2009;136:2-13.
89. Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlü N. Development and characterization of cyclosporine a loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J Control Release 2011;151:286-94.
90. Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie 2011;66:594-9.
91. Lütfi G, Müzeyyen D. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm Dev Technol 2013;18:701-9.
92. Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm 2013;39:508-19.
93. Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 2009;27:857-65.
94. Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L, et al. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des 2010;16:1644-53.
95. Ong WY, Shalini SM, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 2014;21:4247-56.
96. Fazil M, Md S, Haque S, Kumar M, Baboota S. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012;47:6-15.
97. Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 2012;48:393-405.
452 Views | 597 Downloads
How to Cite
Kadian, R. “NANOPARTICLES: A PROMISING DRUG DELIVERY APPROACH”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 11, no. 1, Jan. 2018, pp. 30-35, doi:10.22159/ajpcr.2018.v11i1.22035.
Review Article(s)