ROLE OF GUT MICROBIOTA IN LIPID METABOLISM

Authors

  • Khrystyna Kvit Department of Therapy No 1 and Medical Diagnostics FPGE, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
  • Viacheslav Kharchenko Department of Gastroenterology, Dietology and Endoscopy, Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i4.23953

Keywords:

Gut microbiota, Lipid profile, Cholesterol, Short chain fatty acids, Probiotics, Prebiotics

Abstract

 Researchers have studied the connection between cholesterol and microbiota for a long time. The results of widely published data demonstrate that the relationship between the lipid balance of the blood and the composition of the intestinal microbiota is apparent. The oblective of this study was, we tried to find the path through which this connection is carried out. Furthermore, the aim was to analyze the studies, which demonstrate the decrease of blood lipids as the result of different prebiotics and probiotics prescribtion. Also, the screening of different data from previous years was done for comparing the changes in the pathogenesis.

Downloads

Download data is not yet available.

References

Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-9.

Bested A, Logan A, Selhub E. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part II – Contemporary contextual research. Gut Pathog 2013;5:3.

Wouter J. De Jonge. The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol 2013;17:25-31.

Sommer F, Backhed F, The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 2013;11:227-38.

Floch MH. Bile salts, intestinal microflora and enterohepatic circulation. Dig Liver Dis 2002;34 Suppl 2:S54-7.

Musso G, Gambino R, Cassader M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: Mechanisms and implications for metabolic disorders. Curr Opin Lipidol 2010;21:76-83.

Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016;7:189-200.

Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 2017;24:660-72.

Puertollano E, Kolida S, Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care 2014;17:139-44.

Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of gut microbiota in coronary artery disease patients: A Possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016;23:908-21.

Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 2009;50:90-7.

Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015;22:658-68.

Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2015;43:817-29.

Caesar R, Fåk F, Bäckhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med 2008;268:320-8.

Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013;3:14-24.

Degirolamo C, Modica S, Palasciano G, Moschetta A. Bile acids and colon cancer: Solving the puzzle with nuclear receptors. Trends Mol Med 2011;17:564-72.

Gourine H, Dib W, Grar H, Benakriche B, Saidi D, Kheroua O. Symbiotic enhances gut mucosa recovery rate and reduces overgrowth of bacteria in experimental protein malnutrition. Int J Pharm Pharm Sci 2015;7:96-100.

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014;30:332-8.

Ktsoyan ZA, Beloborodova NV, Sedrakyan AM, Osipov GA, Khachatryan ZA, Kelly D, et al. Profiles of microbial fatty acids in the human metabolome are disease-specific. Front Microbiol 2010;1:148.

Kvit KB, Kharchenko NV. Gut microbiota changes as a risk factor for obesity. Wiad Lek 2017;70:231-5.

Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014;60:824-31.

Grill JP, Cayuela C, Antoine JM, Schneider F. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol 2000;31:154-6.

Lim HJ, Kim SY, Lee WK. Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. J Vet Sci 2004;5:391-5.

Klaver FÐ, Мееr К. Тhe assumed assimilation of cholesterol by Lactobacillus and Bifibacterium bifidum is due to their bile-deconjugating activity. Ðррl Environ Microbiol 1993;59:1120-24.

Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr 2011;6:209-40.

LeBlanc J, Laiño J, del Valle M. B-Group vitamin production by lactic acid bacteria-current knowledge and potential applications J Appl Microbiol 2011;111:1297-309.

Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575-84.

Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 2006;72:1729-38.

Betsi GI, Papadavid E, Falagas ME. Probiotics for the treatment or prevention of atopic dermatitis: A review of the evidence from randomized controlled trials. Am J Clin Dermatol 2008;9:93-103.

Kankaanpää PE, Yang B, Kallio HP, Isolauri E, Salminen SJ. Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 2002;13:364-9.

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P, et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 2017;16:79.

Pereira DI, Gibson GR. Effect of consumption of рrоbiotics and рrеbiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 2002;37:259-81.

Pereira DI, Gibson GR. Cholesterol assimilation by lactic acid bacteria and Bifidobacteria isolated from the human gut. Appl Environ Microbiol 2002;68:4689-93.

Beylot M. Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br J Nutr 2005;93 Suppl 1:S163-8.

Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 2012;3:455-9.

García-Peris P, Velasco C, Lozano MA, Moreno Y, Paron L, de la Cuerda C, et al. Effect of a mixture of inulin and fructo-oligosaccharide on Lactobacillus and Bifidobacterium intestinal microbiota of patients receiving radiotherapy: A randomised, double-blind, placebo-controlled trial. Nutr Hosp 2012;27:1908-15.

Vulevic J, Juric A, Tzortzis G. A mixture of transgalactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013;143:324-31.

Williams CM, Jackson KG. Inulin and oligofructose: Effects on lipid metabolism from human studies. Br J Nutr 2002;87 Suppl 2:S261-4.

Aliasgharzadeh A, Khalili M, Mirtaheri E, Pourghassem Gargari B, Tavakoli F, Abbasalizad Farhangi M, et al. A combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with Type 2 diabetes: A randomized controlled clinical trial. Adv Pharm Bull 2015;5:507-14.

Rhee YK, Han MJ, Choi EC, Kim DH. Hypocholesterolemic activity of Bifidobacteria isolated from a healthy korean. Arch Pharm Res 2002;25:681-4.

Thushara RM, Gangadaran S, Solati Z, Moghadasian MH. Cardiovascular benefits of probiotics: A review of experimental and clinical studies. Food Funct 2016;7:632-42.

Kiessling G, Schneider J, Jahreis G. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 2002;56:843-9.

Nuraida L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Human Wellness 2015;4:47-55.

Taranto MP, Perdigón G, Médici M, De Valdez GF. Animal model for in vivo evaluation of cholesterol reduction by lactic acid bacteria. Methods Mol Biol 2004;268:417-22.

Banerjee D, Chowdhury R, Bhattacharya P. The prebiotic influence of inulin on growth rate and antibiotic sensivity of Lactobacillus casei. Int J Pharm Pharm Sci 2016;8:181-4.

Holscher HD, Bauer LL, Gourineni V. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J Nutr 2015;145:2025-32.

Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P, et al. Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009;101:541-50.

Loh G, Eberhard M, Brunner RM. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J Nutr 2006;136:1198-202.

Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012;9:577-89.

Portune KJ, Benítez-Páez A, Del Pulgar EM. Gut microbiota, diet and obesity-related disorders – The good, the bad and the future challenges. Mol Nutr Food Res 2017;61:1500815.

Devillard E, McIntosh FM, Duncan SH, Wallace RJ. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 2007;189:2566-70.

Verthé K, Possemiers S, Boon N, Vaneechoutte M, Verstraete W. Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions. Appl Microbiol Biotechnol 2004;65:465-72.

Gupta R, Gupta N, Rathi P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 2004;64:763-81.

Hazen SL, Smith JD. An antiatherosclerotic signaling cascade involving intestinal microbiota, microRNA-10b, and ABCA1/ABCG1-mediated reverse cholesterol transport. Circ Res 2012;111:948-50.

Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: A new clinical frontier. Gut 2016;65:330-9.

Karlsson C, Ahrné S, Molin G. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: A randomized controlled trial. Atherosclerosis 2010;208:228-33.

Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 2002;76:1249-55.

Portugal LR, Gonçalves JL, Fernandes LR, Silva HP, Arantes RM, Nicoli JR, et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on Atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res 2006;39:629-35.

Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-81.

Chan YK, Brar MS, Kirjavainen PV. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: A pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice. BMC Microbiol 2016;16:264.

Imaizumi, K. Diet and atherosclerosis in apolipoprotein E-deficient mice. Biosci Biotechnol Biochem 2011;75:1023-35.

Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, et al. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: Targeted and untargeted community analysis with correlation of biomarkers. J Nutr Biochem 2017;44:35-43.

Published

01-04-2018

How to Cite

Kvit, K., and V. Kharchenko. “ROLE OF GUT MICROBIOTA IN LIPID METABOLISM”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 4, Apr. 2018, pp. 4-8, doi:10.22159/ajpcr.2018.v11i4.23953.

Issue

Section

Review Article(s)