A REVIEW ON THE SYNTHETIC METHODOLOGIES OF CHROMONES

Authors

  • Mahathy Vanguru Department of Biochemistry, University College of Science and Informatics, Mahatma Gandhi University, Nalgonda, Telangana, India.
  • Ramchander Merugu Department of Biochemistry, University College of Science and Informatics, Mahatma Gandhi University, Nalgonda, Telangana, India.
  • Swetha Garimella Department of Biochemistry, University College of Science and Informatics, Mahatma Gandhi University, Nalgonda, Telangana, India.
  • Laxminarayana E Department of Science and Humanities, Sreenidhi Institute of Science and Technology, Hyderabad, Telangana, India.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i12.27960

Keywords:

Chromones, Synthesis, Biological activities

Abstract

Chromones group of compounds and their derivatives form the essential component of pharmacophores in many biologically active molecules. They exhibit a wide range of biological activities such as antibiotic, antitumor, antiviral, antioxidant, antipsychotic, and antihypoxic activities. These applications have stimulated a continuous search for the synthesis of new compounds in this field and are being extensively investigated. The various methodologies so far reported for the synthesis of these compounds with the compounds biological applications are discussed in this communication

Downloads

Download data is not yet available.

References

Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 2003;103:893-930.

Edwards AM, Howell JB. The chromones: History, chemistry and clinical development. A tribute to the work of Dr. R.E.C. Altounyan. Chem Exp Allergy 2000;30:756-74.

Miao H, Yang Z. Regiospecific carbonylative annulation of iodophenol acetates and acetylenes to construct the flavones by a new catalyst of palladium-thiourea-dppp complex. Org Lett 2000;2:1765-8.

Jaen JC, Wise LD, Heffner TG, Pugsley TA, Meltzer LT. Dopamine autoreceptor agonists as potential anti-psychotics. J Med Chem 1991;34:248-56.

Bass RJ. Synthesis of chromones by cyclization of 2-hydroxyphenyl ketones with boron trifluoride–diethyl ether and methanesulphonyl chloride. J Chem Soc Chem Commun 1976;2:78-9.

Bolos J, Anglada L, Gubert S, Planas JM, Agut J, Princep M, et al. Ortiz. 7-[3-(1-piperidinyl) propoxy]chromenones as potential anti-psychotics. J Med Chem 1998;41:5402-9.

Zhi L, Ringgenberg JD, Edwards JP, Tegley CM, West SJ, Pio B, et al. Development of progesterone receptor antagonists from 1,2-dihydrochromeno[3,4-f]quinoline agonist pharmacophore. Bioorg Med Chem Lett 2003;13:2075-8.

Vu AT, Campbell AN, Harris HA, Unwalla RJ, Manas ES, Mewshaw RE. ERβ ligands Part 6: 6H- chromeno[4,3-b]quinolines as a new series of estrogen receptor β-selective ligands. Bioorg Med Chem Lett 2007;17:4053-6.

Yu D, Brossi A, Kilgore N, Wild C, Allaway G, Lee KH, et al. Anti-HIV agents. Part 55: 3’R,4’R-di-(O)-(-)-camphanoyl-2’,2’- dimethyldihydropyrano[2,3-f]chromone (DCP), a novel anti-HIV agent. Bioorg Med Chem Lett 2003;13:1575-6.

Recanatini M, Bisi A, Cavalli A, Belluti F, Gobbi S, Rampa A, et al. A new class of non-steroidal aromatase inhibitors: Design and synthesis of chromone and xanthone derivatives and inhibition of the P 450 enzymes aromatase and 17α-Hydroxylase/C 17,20-Lyase. J Med Chem 2001;44:672-80.

Albrecht U, Lalk M, Langer P. Synthesis and structure-activity relationships of 2-vinyl chroman-4-ones as potent antibiotic agents. Bioorg Med Chem Lett 2005;13:1531-6.

He L, Chang HX, Chou TC, Savaraj N, Cheng CC. Design of anti-neoplastic agents based on the 2-phenyl naphthalene type structural pattern synthesis and biological activity studies of 11H-Indolo [3, 2-c] quinoline derivatives. Eur J Med Chem 2003;38:101-7.

Rodriguez-Loaiza P, Quintero A, Sotres RR, Solano JD, Lira-Rocha A. Synthesis and evaluation of 9-anilinothiazolo [5,4-b] quinoline derivatives as potential anti tumorals. Eur J Med Chem 2004;39:5-10.

Guo LJ, Wei CX, Jia JH, Zhao LM, Quan ZS. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur J Med Chem 2009;44:954-8.

Shi A, Nguyen TA, Battina SK, Rana S, Takemoto DJ, Chiang PK, et al. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg Med Chem Lett 2008;18:3364-8.

Pedram B, van Oeveren A, Mais DE, Marschke KB, Verbost PM, Groen MB, et al. A tissue-selective nonsteroidal progesterone receptor modulator: 7,9-difluoro-5-(3-methylcyclohex-2-enyl)-2,2,4-trimethyl- 1,2-dihydrochromeno[3,4-f]quinoline. J Med Chem 2008;51:3696-9.

Nagaiah K, Venkatesham A, Rao RS, Saddanapu V, Yadav JS, Basha SJ, et al. Synthesis of new cis-fused tetrahydrochromeno [4,3-b]quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines. Bioorg Med Chem Lett 2010;20:3259.

Zhou T, Shi Q, Lee KH. Efficient microwave-assisted one-pot preparation of angular 2,2-dimethyl-2H-chromone containing compounds. Tetrahedron Lett 2010;51:4382-6.

Ramesh S, Nagarajan VR. A flexible approach to the chromeno quinolines under copper/lewis acid catalysis. Syn Lett 2010;5:757-60.

Prasad VJ, Reddy JS, Kumar NR, Solomon KA, Krishna GG. An efficient ultra sound promoted catalyst-free protocol for the synthesis of chromeno [4,3-b]quinolin-6-ones. J Chem Sci 2011;123:673-9.

Majumdar KC, Ponra S, Taher A. Dihydro-3H-chromeno[3,4-b][4,7] phenanthrolin-3-one and chromeno[4,3-b]pyrano[3,2-f]quinolin- 3(13H)-one derivatives by aza-diels-alder reaction. Synthesis 2011;3:463-8.

Maalej E, Chabchoub F, Samadi A, de los Ríos C, Perona A, Morreale A, et al. Synthesis, biological assessment and molecular modeling of 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6] chromeno[2,3-b]quinolin-13-amines. Bioorg Med Chem Lett 2011;21:2384-8.

Ramesh S, Nagarajan R. Synthesis of Di hydro chromeno[4,3-b] pyrrolo[3.2-f]quinolines via intramolecular aza diels-alder reaction. Tetrahed Lett 2011;52:4857-60.

Kim MK, Yu MS, Park HR, Kim KB, Lee C, Cho SY, et al. 2, 6-Bis-aryl methyloxy-5-Hydroxy chromones with anti-viral activity against both hepatitis C virus (HCV) and SARS associated coronavirus(SCV). Eur J Med Chem 2011;46:5698-704.

Luniewski W, Wietrzyk J, Godlewska J, Switalska M, Piskozub M, Peczynska-Czoch W, et al. New derivatives of 11-methyl-6-[2-(dimethyl amino) ethyl]-6H-indolo [2,3-b]quinoline as cytotoxic DNA topoisomerase 2 inhibitors. Bioorg Med Chem Lett 2012;22:6103-7.

Bedoya LM, Abad MJ, Calonge E, Saavedra LA, Gutierrez C M, Kouznetsov VV, et al. Quinoline-based compounds as modulators of HIV transcription through NF-kappaB and sp1 inhibition. Antiviral Res 2010;87:338-44.

Motamedi R, Sarvatahevabadi M, Rezaei MR. Oxidative aromatization of novel tetrahydrochromeno[4,3-b]quinolines using silica sulfuric acid/NaNO2. Arab J Chem 2012; 10(1):1-4.

Bennardi DO, Romanelli GP, Jios JL, Autino JC, Baronetti GT, Thomas HJ. ChemInform Abstract: Efficient Microwave Solvent-Free Synthesis of Flavones, Chromones, Coumarins and Dihydrocoumarins. ARKAT USA Inc., 2008;11:123-30.

Gordey EE, Yadav PN, Merrin MP, Davies J, Ward SA, Woodman GM, et al. Synthesis and biological activities of 4-N-(anilinyl-n-[oxazolyl])- 7-chloroquinolines (n=3’/4’) against Plasmodium falciparum in in vitro models. Bioorg Med Chem Lett 2011;21:4512-5.

Dengle RV, Deshmukh RN. Synthesis and antimicrobial evaluation of chromones bearing 1, 5-benzo thiazepinyl moiety. Inter J Pharml Sci Res 2013;4(4):1495-8.

Venkata S, Anuradha V. An efficient synthesis of hetroannulated chromene-9-carbonitrile derivatives via Baylis-Hillmann reaction. Int J Curr Pharm Res 2013;5(3):36-9.

Dengle RV, Deshmukh RN. Synthesis and antimicrobial evaluation of chromones bearing 1,5-benzothiazepine moiety. In J Pharm Sci Res 2013;4:1495-8.

Ch VS, Anuradha V. An efficient synthesis of hetroannulated chromene- 9-carbonitrile derivatives via baylis-hillmann reaction. Int J Curr Pharm Res 2013;5:36-9.

Guo Y, Zhong S, Wei L, Wan JP. Transition-metal-free synthesis of 3-sulfenylated chromones via KIO3-catalyzed radical C(sp2)-H sulfenylation. Beilstein J Org Chem 2017;13:2017-22.

Eguchi T, Hoshino Y. Synthesis of 2H-chromenes through the reduction of chromones with 9-BBN. Chem Soc Jpn 2001;74:967-70.

Ibrahim MA, El-Gohary MM, Badran S, Hashiem SH. Synthesis and reactivity of 2-aminochromone-3- carboxaldehydes towards nucleophilic reagents. J Pharm Appl Chem 2017;3:83-92.

Yadav SK. Process for the preparation of chromones, isoflavones and homoisoflavones using vilsmeier reagent generated from phthaloyl dichloride and DMF. Int J Organic Chem 2014;4:236-46.

Engelhart CA, Aldrich CC. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013;78:7470-81.

Liang C, Baoqu W, Yucheng Z, Shengjiao Y, Jun L. Synthesis of multisubstituted chromone-fused bicyclic pyridine compounds. Chin J Org Chem 2017;37:1433-42.

Cheng G, Qi Y, Zhou X, Sheng R, Hu YZ, Hu Y. Synthesis of 6-azachromone derivatives through cascade carbonylation-sonogashira-cyclization. Sci Rep 2017;7:4398.

Patel MC, Nilesh NG, Rajani DP. Synthesis and characterization of some novel chromones and chromanones derivatives and its biological screening. Pharm Chem 2011;3:422-32.

Talhi O, Brodziak-Jarosz L, Panning J, Orlikova B, Zwergel C, Tzanova T, et al. Synthesis of benzopyran-4-ones with cancer preventive and therapeutic potential. Eur J Org Chem 2016;5:965-75.

Smith RJ, Nhu D, Clark MR, Gai S, Lucas NT, Hawkins BC. Synthesis of chromones from 1,1-diacylcyclopropanes: Toward the synthesis of bromophycoic acid E. J Org Chem 2017;82:5317-27.

Yang Q, Alper H. Synthesis of chromones via palladium-catalyzed ligand-free cyclocarbonylation of o-iodophenols with terminal acetylenes in phosphonium salt ionic liquids. J Org Chem 2010;75:948-50.

Awuah E, Capretta A. Access to flavones via a microwave-assisted, one-pot sonogashira-carbonylation-annulation reaction. Org Lett 2009;11:3210-3.

Chai G, Qiu Y, Fu C, Ma S. Efficient assembly of chromone skeleton from 2,3-allenoic acids and benzynes. Org Lett 2011;13:5196-9.

Zanwar MR, Raihan MJ, Gawande SD, Kavala V, Janreddy D, Kuo CW, et al. Alcohol mediated synthesis of 4-Oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins. J Org Chem 2012;77:6495-504.

Liang B, Huang M, You Z, Xiong Z, Lu K, Fathi R, et al. Pd-catalyzed copper-free carbonylative sonogashira reaction of aryl iodides with alkynes for the synthesis of alkynyl ketones and flavones by using water as a solvent. Org Chem 2005;70:6097-100.

Zhou C, Dubrovsky AV, Larock RC. Diversity-oriented synthesis of 3-iodochromones and heteroatom analogues via ICL-induced cyclization chengxiang. J Org Chem 2006;71:1626-32.

Swati K, Megha R, Seema B. Docking and cytotoxicity studies of 2-vinylchromone derivatives on human breast cancer cell lines. Int J Pharm Pharm Sci 2015;1:113-7.

Dilip FA, Kumar TR. Endophytic fungi: treasure for anti-cancerous compounds. Int J Pharm Pharm Sci 2016;1:35-42.

Published

07-12-2018

How to Cite

Vanguru, M., R. Merugu, S. Garimella, and L. E. “A REVIEW ON THE SYNTHETIC METHODOLOGIES OF CHROMONES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 12, Dec. 2018, pp. 9-16, doi:10.22159/ajpcr.2018.v11i12.27960.

Issue

Section

Review Article(s)