BIOASSAY-GUIDED ISOLATION OF THE MAJOR COMPOUND WITH ANTIOXIDANT ACTIVITY FROM THE ALGERIAN MEDICINAL PLANT BUBONIUM GRAVEOLENS

  • Radja Messaoudi Phytochemistry and Organic Synthesis Laboratory, Medicinal Faculty, UTMB, 08000 Bechar, Algeria.
  • Abdelkrim Cheriti Phytochemistry and Organic Synthesis Laboratory, Medicinal Faculty, UTMB, 08000 Bechar, Algeria. http://orcid.org/0000-0002-4972-702X
  • Younes Bourmita Phytochemistry and Organic Synthesis Laboratory, Medicinal Faculty, UTMB, 08000 Bechar, Algeria.

Abstract

Objective: The objective of this research was to isolate and identify the major compound from the antioxidant extract obtained from the leaves of Bubonium graveolens.

Methods: A bioguided fractionation was done to isolate and identify the major compound responsible of the antioxidant activity. The chemical structure of the isolated natural compound was established by spectroscopic means including UV, Fourier transform infrared, 1H NMR, and13C NMR. The purified compound was accurately tested for its antioxidant activity by the 2, 2-diphenyl-1-picrylhydrazyl assay at 517 nm.

Results: The major compound named myricetin 3′-O-rhamnoside was isolated for the 1st time from the leaves of B. graveolens a medicinal specie of Algerian Sahara belonging to the Asteraceae family. The study showed that the myricetin 3ʹ-O-rhamnoside has an antioxidant potential 59% when compared with standard ascorbic acid with an IC 50=0.916 mg/ml.

Conclusion: In the present work, it was possible to isolate and identify for the 1st time the major compound from the antioxidant fraction of B. graveolens.

Keywords: Bubonium Graveolens, Antioxidant activity, Asteraceae, Medicinal plants, Sahara.

References

1. Cheriti A, Belboukhari M, Belboukhari N, Djeradi H. Phytochemical and biological studies of Launaea Cass. Genus (Asteraceae) from Algerian Sahara. Curr Top Phytochem 2012;11:67.
2. Berreghioua A, Cheriti A. Phytochemical investigation of the medicinal plant Moricandia arvensis L. From Algerian Sahara. Asian J Pharm Clin Res 2018;11:450-3.
3. a) Cheriti A, Saad A, Belboukhari N, Ghezali S. The essential oil composition of Bubonium graveolens (Forssk) maire from the Algerian Sahara. J Flavour Fragr 2007;22:286-8. b) Keffous F, Belboukhari N, Djaradi H, Cheriti A, Sekkoum K, Aboul-Enein HY. Investigation of the antioxidant potential and total phenolics of Bubonium gravelence aerial parts. Phyto Chem Bio Sub J 2017;11:73-9.
4. Said ME, Bombarda I, Naubron JV, Vanloot P, Jean M, Cheriti A, et al. Isolation of the major chiral compounds from Bubonium graveolens essential oil by HPLC and absolute configuration determination by VCD. Chirality 2017;29:70-9.
5. Znini M, Cristofari G, Majidi L, Ansari A, Bouyanzer A, Paolini J, et al. Green approach to corrosion inhibition of mild steel by essential oil leaves of Asteriscus graveolens (Forssk.) in sulphuric acid medium. Int J Electrochem Sci 2012;7:3959-1.
6. Boulenouar N., Marouf A, Cheriti A, Belboukhari N. Medicinal plants extracts as source of antifungal agents against Fusarium oxysporum f. Sp. Albedinis. J Agr Sci Tech 2012;14:659-69.
7. Haddouchi F, Chaouche TM, Halla N. Screening phytochimique, activités antioxydantes et pouvoir hémolytique de quatre plantes sahariennes dʼAlgérie, Phytothérapie 2016;14:1-9.
8. Aici D, Cheriti A, Bourmita Y, Belboukhari N. Antimicrobial activity of essential oils of Bubonium graveolens (forssk.) and Anvillea radiata (coss.). Phyto Chem Bio Sub J 2013;7:116-9.
9. Ramdane F, Essid R, Mkadmini K, Hammami M, Fares N, Mahammed MH, et al. Phytochemical composition and biological activities of Astericus graveolens (Forssk) extracts. J Process Biochem 2017;56:186-92.
10. Chaib F, Allali H, Bennaceur M, Flamini G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) less. And Pulicaria incise (Lam.) DC: Two Asteraceae herbs growing wild in the Hoggar. Chem Biodiver 2017;14:1700092.
11. Triana J, Eiroa JL, Morales M, Perez FJ, Brouard I, Quintana J, et al. Sesquiterpenoids isolated from two species of the Asteriscus alliance. J Nat Prod 2016;79:1292-7.
12. Sarg TM, El-Dahmy SI, Ateya AM, Abdel-Fattah HA. Two new bisabolone hydroperoxides and biological activity of Asteriscus graveolens. Fitoterapia 1994;65:241-4.
13. Akssira M., Mellouki F, Salhi A, Alilou H, Saouf A, Hanbali F, et al. Naupliolide, a sesquiterpene lactone with a novel tetracyclic skeleton from Nauplius graveolens subsp. Odorus, Tetrahedron Lett 2006;47:6719-21.
14. Ahmed AA, Ishak MS, Micheal HN, El-Ansari MA, El-Sissi HI. Flavonoids of Asteriscus graveolens. J Nat Prod 1991;54:1092-3.
15. Alilou H., Bencharki B. Activité antifongique des flavonoides isoles de la plante Asteriscus graveolens Subsp. Odorus (Schousb.) Greuter Eur Sci J 2016;12:258-70.
16. Scotti L, Fernandes MB, Muramatsu E, Emereciano VP, Tavares JF, Silva MS, et al. 13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids. Braz J Pharm 2011;47:241-8.
17. Paramdeep S, Damanpreet S, Rajesh KG. Phytoflavonoids: Antiepileptics for the future. Int J Pharm Pharm Sci 2014;6:51-66.
18. a) Kahko MP, Hopia I, Vuorela J, Rauha J, Kujal S, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954-62. b) Sabbagh G, Berakdar N. Molecular docking study of flavonoid compounds as inhibitors of Î’-ketoacyl acyl carrier proteinsynthase Ii (Kas Ii) of Pseudomonas aeruginosa. Int J Pharm Pharm Sci 2016;8:52-61.
19. Dos Santos JR, Fleurentin J. Ethnopharmacologie. Paris: Sources, Méthodes, Objectifs, ORSTOM et Société Française Dʼethnopharmacologie; 1991. p. 409.
20. Neda I, Vlazan P, Pop RO, Sfarloaga P, Grozescu I, Segneanu A. Peptide and Amino Acids Separation and Identification from Natural Products, In Analytical Chemistry, Ira S. Krull editor, UK In TechOpen; 2012. p. 144.
21. Belboukhari N, Cheriti A. Flavonoids of Limoniastrum feei. Res J Phytochem 2007;1:74-8.
22. Lee SK, Mbwambo ZH, Chung H, Luyengi LE, Gamez RG, Kinghorn AD, et al. High throughput screen., evaluation of the antioxidant potential of natural products. Comb J Chem 1998;1:35-46.
23. Mhlongo NY, Babu NK, Himakar RK, Sershen N, Cheriti A, Govender P. Phytochemical screening, antioxidant and antimicrobial efficacy of Protorhus longifolia (Bernh. Ex C. Krauss) Engl. (Anacardiaceae) seed extracts. Curr Trends Biotechno Pharm 2018;12:128-38.
24. Amzad M., Islam A, Jolly YN, Kabir MJ. A new favonol glycoside from the seeds of Zea Mays. Indian J Chem 2006;45:1319-21.
25. Fabiana G., Renato M, Steinhauser L, Heinzmann B, Albert K, Merfort I, et al. Four New flavonol glycosides from the leaves of Brugmansia suaveolens. Molecules 2014;19:6727-36.
26. Chang H, Ho Y, Sheu M, Lin Y, Tseng M, Wu S, et al. Antioxidant and free radical scavenging activities of Phellinus merrillii extracts. J Bot Stud 2007;48:470-7.
27. Bitam F, Letizia M, Manzo E, Dibi A, Gavagnin M. Chemical characterisation of the terpenoid constituents of the Algerian plant Launeae arborescens. Phytochemistry 2008;69:2984-92.
28. Z¨uhal G, Om¨ur DE. Flavonol glycosides from Asperula arvensis. Turk J Chem 2005;29:163-9.
29. Jorje MD, Frederio GC, Maria LS. Flavanol from Davilla flexuosa. J Braz Chem Soc 1996;7:115-8.
30. Shimin L, Chih Y, Chi T. Hydroxylated plymethoxy flavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 2006;54:4176-85.
31. Bargah RK, Chinmoyee D. A new flavonol glycoside from the flowers of Moringa pterygosperma. J Appl Chem 2012;3:2278-5736.
32. Bouaziz A, Khennouf S, Zarga M, Abdalla S, Baghiani A, Charef N. Phytochemical analysis, hypotensive effect and antioxidant properties of Myrtus communis L. Growing in Algeria. Asian Pac J Trop Biomed 2015;5:19-28.
33. Arya R, Babu V, Ilyas M, Nasim KT. Myricetin 3ʹ-rhamnoside-3- galactoside from Buchanania lanzan (Anacardiaceae). Phytochemistry 1992;31:2569-70.
34. Ansari AQ, Ahmed SA, Waheed MA, Juned S. Extraction and determination of antioxidant activity of Withania somnifera Dunal. Eur J Exp Bio 2013;3:502-7.
35. Barbosa W, Peres A, Gallori S, Vincieri F. Determination of myricetin derivatives in Chrysobalanus icaco L. (Chrysobalanaceae). Braz J Pharm 2006;16:333-7.
36. Hayder N, Bouhlel I, Skandrani I, Kadri M, Steiman R, Guiraud P, et al. In vitro antioxidant and antigenotoxic potentials of myricetion-3-o-rhamnoside from Myrtus communis: Modulation of expression of genes involved in cell defence system using c DNA microarray. J Toxicol 2008;22:567-81.
37. Djeradi D, Rahmouni A, Cheriti A. Antioxidant activity of flavonoids: A QSAR modeling using Fukui indices descriptors. J Mol Model 2014;20:2476-83.
Statistics
193 Views | 283 Downloads
Citations
How to Cite
Messaoudi, R., A. Cheriti, and Y. Bourmita. “BIOASSAY-GUIDED ISOLATION OF THE MAJOR COMPOUND WITH ANTIOXIDANT ACTIVITY FROM THE ALGERIAN MEDICINAL PLANT BUBONIUM GRAVEOLENS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 11, no. 11, Nov. 2018, pp. 424-6, doi:10.22159/ajpcr.2018.v11i11.28514.
Section
Original Article(s)