EXTRACELLULAR BIOFABRICATION OF SILVER AND GOLD NANOPARTICLES: TREASURES FROM THE ABYSSAL ZONE

  • NANTHAKUMAR RAMALINGAM Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India.
  • CHELLAN ROSE Department of Biochemistry and Biotechnology, Central Leather Research Institute, Chennai, Tamil Nadu, India.
  • CHITRA KRISHNAN Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India.
  • SEETHALAKSHMI SANKAR Department of Pharmacology, ESI Medical College and PGIMSR, Chennai, Tamil Nadu, India.
  • SELINA GRACE KURIAN Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India.

Abstract

The synthesis of nanoparticles can be accomplished by physical, chemical and biological strategies. Since this has become an expanding area of research in the field of medical sciences and Technology, owing to its potential applications, the need for eco-friendly, non-toxic and economical methods of synthesis have arisen. Biosynthesis of nanoparticles have become the main field of research as it is time efficient, cost effective, less toxic and has abundant resource. This review emphasizes on the biosynthesis of gold (Au) and silver nanoparticles (AgNPs) using marine sources with special reference to algae, their characterisation and its applications. The characterisation of metal nanoparticles is an essential step and can be carried out by various instruments. The various pharmacological, electrical, pest management, parasitology and medical applications of these marine source induced synthesis of nanoparticles have also been portrayed in this review. 

Keywords: Bio-fabrication, Metal nanoparticles, Bhasma, Marine sources, Marine algae, Characterisation.

References

REFERENCES
1. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 2010;6:257-262.
2. Se-Kwon Kim (Ed). Springer Handbook of Marine Biotechnology. Springer, Berlin: Heidelberg; 2015, 1229-1246.
3. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016;7:17-28.
4. Mohammadlou M, Maghsoudi H, -Malmiri HJ. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int Food Res J 2016;23:446-463.
5. Nath D, Banerjee P. Green nanotechnology – A new hope for medical biology. Environ Toxicol Pharmacol 2013;36:997-1014.
6. Ramkumar VS, Prakash S, Ramasubburayan R, Pugazhendhi A, Gopalakrishnan K, Kannapiran E, et al. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb Technol 2016;95:45-57.
7. Sharma A, Sharma S, Sharma K, Chetri SPK, Vashishtha A, Singh P, et al. Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 2016;28:1759-1774.
8. Devi JS, Bhimba BV. Anticancer activity of silver nanoparticles synthesised by the seaweed Ulva lactuca invitro. Sci Rep 2012;1. http://dx.doi.org/10.4172/scientific reports.242.
9. Singh CR, Kathiresan K, Anandhan S. A review on marine based nanoparticles and their potential applications. Afr J Biotechnol 2015;14:1525-1532.
10. El Gamal AA. Biological importance of marine algae. Saudi Pharm J 2010;18:1-25.
11. Sarkar PK, Chaudhary AK. Ayurvedic Bhasma: the most ancient application of nanomedicine. J Sci Ind Res 2010;69:901-905.
12. Pal SK. The Ayurvedic Bhasma: The ancient science of nanomedicine. Recent Pat Nanomed 2015;5:12-18.
13. Chandra M, Das PK. Green routes to noble metal nanoparticle synthesis. Int J Green Nanotechnol 2009;1:10-25.
14. Abou El-Nour KMM, Eftiha A, Al-Warthan AA, Ammar RAA. Synthesis and applications of silver nanoparticles. Arabian J Chem 2010;3:135-140.
15. Prasad TNVKV, Kambala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 2013;25:177-182.
16. Varun S, Sudha S, Kumar PS. Biosynthesis of gold nanoparticles from aqueous extract of Dictyota bartayresiana and their antifungal activity. Indian J Adv Chem Sci 2014;2:190-193.
17. Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA. Marine algae mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng 2014;37:1591-1597.
18. Ghodake G, Lee DS. Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 2011;6: 268-271.
19. Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine alga. Appl Nanosci 2013;3:145-151.
20. Jegadeeswaran P, Shivaraj R, Venckatesh R. Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Dig J Nanomater Biostruct 2012;7:991-998.
21. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi R, Alkhulaifi MM. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterisation. Saudi J Biol Sci 2018, Article in press.
22. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met 2014, http://dx.doi.org/10.1155/2014/692643.
23. Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, et al. Green synthesis and characterisation of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 2015;41:5723-5730.
24. Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, et al. Sargassum muticum-synthesised silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 2015;114:4305-4317.
25. Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 2015;9:325-330.
26. Arunkumar M, Suhashini K, Mahesh N, Ravikumar R. Quorum quenching and antibacterial activity of silver nanoparticles synthesised from Sargassum polyphyllum. Bangladesh J Pharmacol 2014;9:54-59.
27. Jayashree S, Thangaraju N. Biosynthesis and characterisation of silver nanoparticles using marine macro algae Sargassum plagiophyllum C.Agardh. J Pharm Biomed Sci 2015;5:705-712.
28. Dhas TS, Kumar VG, Abraham LS, Karthick V, Govindaraju K. Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim Acta Part A 2012;99:97-101.
29. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 2007;57:97-101.
30. Kumar P, Selvi SS, Prabha AL, Kumar KP, Ganeshkumar RS, Govindaraju M. Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng 2012;4:12-16.
31. Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem 2016;6:1-13.
32. Dhas TS, Kumar VG, Karthick V, Govindaraju K, Narayana TS. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim Acta Part A 2014;133:102-106.
33. Subramanian P, Periyannan R, Gandhi V, Ganesan R, Ramar M, Marimuthu PN. A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an invtro analysis. Mater lett 2017;189:196-200.
34. Gonzalez-Ballesteros N, Prado-Lopez S, Rodriguez-Gonzalez JB, Lastra M, Rodriguez-Arguelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf B 2017;153:190-198.
35. Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kutzing). Spectrochim Acta Part A 2012;99:166-173.
36. Vijayan SR, Santhiyagu P, Singamuthu M, Ahila NK, Jayaraman R, Ethiraj K. Synthesis and characterisation of silver and gold nanoparticles using aqueous extract of seaweed, Tubinaria conoides and their antimicrofouling activity. Sci World J 2014, http://dx.doi.org/10.1155/2014/938272.
37. Kumar P, Senthamilselvi S, Lakshmipraba A, Premkumar K, Muthukumaran R, Visvanathan P, et al. Efficacy of bio-synthesised silver nanoparticles using Acanthophora spcifera to encumber biofilm formation. Dig J Nanomater Biostruct 2012;7:511-522.
38. Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, et al. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesised silver nanoparticles. Parasitol Res 2016;115:651-662.
39. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterisation of their antibacterial activity. Arabian J Chem 2017;10:s3029 - s3039.
40. Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 2011;3:143-148.
41. de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, Santiago JAS, et al. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian J Chem 2016, https://doi.org/10.1016/j.arabjc.2016.04.014.
42. Kumar P, Selvi SS, Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 2013;3:495-500.
43. Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Subramaniam J, Chandramohan B, et al. One pot synthesis of silver nanoparticles using the seaweed Gracilaria edulis: biophysical characterisation and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus. J Appl Phycol 2017;29:649-659.
44. Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave- mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 2014;174:2777-2790.
45. Kiran MV, Murugesan S. Bio-synthesis of silver nanoparticles from marine alga Halymenia porphyroides and its antibacterial efficacy. Int J Curr Microbiol App Sci 2014;3:96-103.
46. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, et al. Characetrisation and biotoxicity of Hypnea musciformis-synthesised silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 2015;121:31-38.
47. Selvam GG, Sivakumar K. Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesised from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl Nanosci 2015;5:617-622.
48. Rajasulochana P, Dhamotharan R, Murugakoothan P, Murugesan S, Krishnamoorthy P. Biosynthesis and characterisation of gold nanoparticles using the alga Kappaphycus alvarezii. Int J Nanosci 2010;9:511-516.
49. Vieira AP, Stein EM, Andreguetti DX, Colepicolo P, Ferreira AMC. Preparation of silver nanoparticles using aqueous extracts of the red algae Laurencia aldingensis and Laurenciella sp. and their cytotoxic activities. J Appl Phycol 2016;28:2615-2622.
50. Montasser MS, Younes AM, Hegazi MM, Dashti NH, El-Sharkawey AE, Beall GW. A novel eco-friendly method of using red algae (Laurencia papillosa) to synthesise gold nanoprisms. J Nanomed Nanotechnol 2016;7, http://dx.doi.org/10.4172/2157-7439.1000383.
51. Abdel-Raouf N, Alharbi RM, Al-Enazi NM, Alkhulaifi MM, Ibraheem IBM. Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterisation. Beni-Suef Univ J Basic Appl Sci 2017;484:774-780.
52. Kumar PSM, MubarakAli D, Saratale RG, Saratale GD, Pugazhendhi A, Gopalakrishnan K, et al. Synthesis of nano-cuboidal gold nanoparticles for effective antimicrobial property against clinical human pathogens. Microb Pathog 2017;113:68-73.
53. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 2015;5:499-504.
54. Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 2013;3:229-233.
55. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterisation and antimicrobial activities of silver nanoparticles synthesised from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater Lett 2014;137:1-4.
56. Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Dung TNB, et al. Biofabrication and characterisation of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep 2017;14:1-7.
57. Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 2016;20:459-464.
58. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al. Seaweed-synthesised silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?. Parasitol Res 2015;114:4087-4097.
59. Rajesh S, Raja DP, Rathi JM, Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. Malvacearum. J Biopest 2012;5:119-128.
60. Devi JS, Bhimba BV. Antimircobial potential of silver nanoparticles synthesised using Ulva reticulate. Asian J Pharm Clin Res 2014;7:82-85.
61. Minhas FT, Arslan G, Gubbuk IH, Akkoz C, Ozturk BY, Asikkutulu B, et al. Evaluation of antibacterial properties on polysulfone composite membranes using synthesised biogenic silver nanoparticles with Ulva compressa (L.) kutz. and Cladophora glomerata (L.) kutz. Extracts. Int J Biol Macromol 2018;107:157-165.
62. El-Kassas HY, Ghobrial MG. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against “Oscillatoria simplicissima”. Environ Sci Pollut Res 2017;24:7837-7849.
63. Ahila NK, Ramkumar VS, Prakash S, Manikandan B, Ravindran J, Dhanalakshmi PK, et al. Synthesis of stable nanosilver particles (AgNPs) by the proteins of seagrass Syringodium isoetifolium and its biomedicinal properties. Biomed Pharmacother 2016;84:60-70.
64. Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, et al. Seagrasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and zika virus vector Aedes aegypti. J Clust Sci 2017;28: 565-580.
65. Palaniappan P, Sathishkumar G, Sankar R. Fabrication of nano-silver particles using Cymodocea serrulata against lung cancer A549 cell lines. Spectrochim Acta Part A 2015;138:885-890.
66. Bunghez IR, Ion RM, Pop S, Ghiurea M, Dumitriu I, Fierascu R.-C. Silver nanoparticles fabrication using marine plant (Mayaca fluviatilis) resources. Analele Ştiinţifice ale Universităţii „Alexandru Ioan Cuza”, Secţiunea Genetică şi Biologie Moleculară, TOM XI, 2010,89-94.
67. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium potulacastrum L. Colloids Surf B 2010;79:488-493.
68. Antony JJ, Sivalingam P, Siva D, Kamalakkannan S, Anbarasu K, Sukirtha R, et al. Comparative evaluation of antibacterial activity of silver nanoparticles synthesised using Rhizophora apiculata and glucose. Colloids Surf B 2011;88:134-140.
69. Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, et al. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 2011:799-803.
70. Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst 2012;8: doi:10.1186/2046-9063-8-11.
71. Kumar SD, Singaravelu G, Ajithkumar S, Murugan K, Nicoletti M, Benelli G. Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential. J Clust Sci 2017;28:359-367.
72. Kumar SD, Singaravelu G, Murugan K, Ajithkumar S, Sivashanmugam K, Nicoletti M, et al. Aegiceras corniculatum-Mediated green synthesis of silver nanoparticles: Biophysical characterisation and cytotoxicity on vero cells. J Clust Sci 2017;28:277-285.
73. Suresh U, Murugan K, Pannerselvam C, Rajaganesh R, Roni M, Aziz AT, et al. Suaeda maritima-based herbal coils an green nanoparticles as potential biopestcides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol 2018;101:225-235.
74. Hamed MR, Givianrad MH, Moradi AM. Biosynthesis of silver nanoparticles using marine sponge Haliclona. Orient J Chem 2015;31:1961-1967.
75. Inbakandan D, Venkatesan R, Khan SA. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B 2010;81:634-639.
76. Inbakandan D, Sivaleela G, Peter DM, Kiurbagaran R, Venkatesan R, Khan SA. Marine sponge extract assisted biosynthesis of silver nanoparticles. Mater Lett 2012;87:66-68.
77. Umayaparvathi S, Arumugam M, Meenakshi S, Balasubramanian T. Biosynthesis of silver nanoparticles using oyster Saccostrea cucullata (Born, 1778): Study of in-vitro antimicrobial activity. Int J Sci Nat 2013;4:199-203.
78. Satapathy S, Paikaray S, Thirunavoukkarasu M, Panda CR, Subbudhi E. Biosynthesis and characterisation of silver nanoparticles derived from marine bivalve Donax cuneatus (Linnaeus) and assessment of its antimicrobial potential. Inorg Nano-Met Chem 2017;47:1044-1048.
79. Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterisation of nanomaterials. Biotechnol Adv 2014;32:711-726.
80. M. Noruzi. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 2015;38:1-14.
81. Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterisation techniques. J Nanomater 2014, http://dx.doi.org/10.1155/2014/417305.
82. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. Detection and characterisation of engineered nanoparticles in food and the environment. Food Addit Contam Part A 2008;25:795-821.
83. Dao ATN, Mott DM, Maenosono S. Handbook of nanoparticles. ed. M. Aliofkhazraei, Spinger International Publishing; Switzerland: 2016, 217-244.
84. Skoog, Holler, Crouch. Instrumental analysis. Cengage Learning India Private Limited, New Delhi; 2007:505-529.
85. Hota G, Idage SB, Khilar KC. Characterisation of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique. Colloids Surf A 2007;293:5-12.
86. Joshi M, Bhattacharyya A, Ali SW. Characterisation techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 2008;33:304-317.
87. Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, et al. A review on synthesis, characterisation and applications of copper nanoparticles using green method. Nano 2017;12:1750043, DOI:10.1142/S1793292017500436.
88. Aromal SA, Babu KVD, Philip D. Characterisation and catalytic activity of gold nanoparticles synthesised using ayurvedic arishtams. Spectrochim Acta Part A 2012;96:1025-1030.
89. Suvith VS, Philip D. Catalytic degradation of methylene blue using biosynthesised gold and silver nanoparticles. Spectrochim Acta Part A 2014;118:526-532.
90. Kirubha E, Vishista K, Palanisamy PK. Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface enhanced Raman spectroscopy. Appl Nanosci 2015;5:777-786.
91. Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Part A 2009;73:650-653.
92. Philip D. Honey mediated green synthesis of silver nanoparticles. Spectrochim Acta Part A 2010;75:1078-1081.
93. Xinfu M, Qingquan G, Yu X, Haixiang M. Green chemistry for the preparation of L-cysteine functionalised silver nanoflowers. Chem Phys Lett 2016;652:148-151.
94. Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B 2016;159:237-242.
95. Konowal E, Sybis M, –Sikorska AM, Milczarek G. Synthesis of dextrin-stabilised colloidal silver nanoparticles and their application as modifiers of cement mortar. Int J Biol Macromol 2017;104:165-172.
Statistics
126 Views | 140 Downloads
Citatons
How to Cite
RAMALINGAM, N., C. ROSE, C. KRISHNAN, S. SANKAR, and S. G. KURIAN. “EXTRACELLULAR BIOFABRICATION OF SILVER AND GOLD NANOPARTICLES: TREASURES FROM THE ABYSSAL ZONE”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 12, no. 2, Jan. 2019, pp. 44-54, doi:10.22159/ajpcr.2019.v12i2.29781.
Section
Review Article(s)