NATURAL ANTIMICROBIALS IN THE PIPELINE AND POSSIBLE SYNERGISM WITH ANTIBIOTICS TO OVERCOME MICROBIAL RESISTANCE

  • EMTENAN M HANAFI Department of Animal Reproduction and Artificial Insemination, NRC, Dokki, Giza, Egypt. http://orcid.org/0000-0001-8898-6385
  • ENAS N DANIAL Department of Chemistry of Natural and Microbial Products Department, NRC, Dokki, Giza, Egypt.

Abstract

The unresponsive use of antibiotics led to the appearance of multiple drug-resistant bacteria strains. Studying the mechanism by which bacteria can resist antibiotics, the so called quorum sensing and biofilm formation, enabled the researchers to find bioactive compounds, derived from eukaryotes and prokaryotes. The disrupt of this mechanism is called quorum sensing inhibitors or quorum quenchers. This article provides an overview on the current research done on such bioactive compounds, the possible use of them as antibiotic alternatives, what are the advantage and disadvantages, the source from which it has been extracted, and how it may succeed to overcome bacterial resistance. The recommendation of researchers is to use some of these natural antimicrobial compounds combined to lower doses of antibiotics for treatment, the fastest way to limit the adverse effects of the exploitation of antibiotics and to avoid bacterial resistance.

Keywords: bacterial resistance- antibiotic adjuvants- antimicrobial enzymes-antimicrobial peptides- essential oils- phytobiotic

References

1. Kalia VC, Rani A, Lal S, Cheema S, Raut CP. Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2007; 2:211-24.
2. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 2005;151:1325-40.
3. Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, Hougen HP. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 2005;151:373-83.
4. Low LY, Yang C, Perego M, Osterman A, Liddington RC. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 2005;280:35433-9.
5. Koch C, Høiby N. Diagnosis and treatment of cystic fibrosis. Respiration 2000;67:239-47.
6. Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 2002;12:325-8.
7. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 2011;21:1001-11.
8. Jamuna Bai A, Rai VR. Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 2011;10:184-94.
9. Kalia VC, Purohit HJ. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit Rev Microbiol 2011;37:121 40.
10. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003;5:1213-9.
11. Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2008;79: 119 26.
12. Bassetti M, Ginocchio F, Mikulska M. New treatment options against gram-negative organisms. Crit Care 2011;15:215.
13. Bhatt D, Kavitha M, Nisha CK, Mahajan Y. Nanotechnology solutions to combat Superbugs, Nanowerk; 2013. Available from: http://www. nanowerk.com/spotlight/spotid=32188.php.
14. Hu Y, Shamaei-Tousi A, Liu Y, Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: A novel topical antibiotic for staphylococcal infections. PLoS One 2010;5:e11818.
15. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 2002;99:7687-92.
16. Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P, et al. Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 2001;45:2877-84.
17. Vranakis I, Goniotakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Gevaert K. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014;97:88-99.
18. Kester JC, Fortune SM. Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2014;49:91-101.
19. Woo PC, To AP, Lau SK, Yuen KY. Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. Med Hypotheses 2003;61:503-8.
20. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: Vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275-89.
21. Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 2000;44:1771-7.
22. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 2005;3:e176.
23. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010;37:311-20.
24. Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A 2014;111:355-60.
25. Wright GD. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv Drug Deliv Rev 2005;57:1451-70.
26. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat 2010;13:151-71.
27. Tillotson GS, Theriault N. New and alternative approaches to tackling antibiotic resistance. F1000Prime Rep 2013;5:51.
28. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014;12:35-48.
29. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009;69:1555-623.
30. Poole K, Russell A, Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Adv Drug Deliv Rev 2005;57:1443-5.
31. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128:1037-50.
32. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009;48:1-2.
33. Miller AA, Miller PF. Emerging Trends in Antibacterial Discovery: Answering the Call to Arms. Norfolk, UK: Caister Academic Press; 2011. Available from: https://www.caister.com/hsp/pdf/flyer/ antibacterial-discovery.pdf.
34. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 2011;21:1001-11.
35. Carlier A, Chevrot R, Dessaux Y, Faure D. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 2004;17:951-7.
36. Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 2014; 62:9211-22.
37. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr., Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly (ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 2002;41:453-8.
38. Balaban N, Gov Y, Bitler A, Boelaert JR. Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int 2003;63:340-5.
39. Giacometti A, Cirioni O, Ghiselli R, Dell’Acqua G, Orlando F, D’Amato G. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides 2005;26:169-75.
40. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 2005;151: 1325-40.
41. Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, Hougen HP. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 2005;151:373-83.
42. Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, et al. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 2008;45:45-52.
43. Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 2011;32:9557-67.
44. Kiri N, Archer G, Climo MW. Combinations of lysostaphin with beta-lactams are synergistic against Oxacillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 2002;46:2017-20.
45. Lian Z, Ma Z, Wei J, Liu H. Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochem 2012;47:201-8.
46. Oulahal-Lagsir N, Martial-Gros A, Bonneau M, Blum LJ. “Escherichia coli-milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling 2003; 19:159-68.
47. Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 2008;24:11-22.
48. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010;38:96-109.
49. Romero M, Martin-Cuadrado AB, Otero A. Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 2012;78:6345-8.
50. Kalia VC, Purohit HJ. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit Rev Microbiol 2011;37:121 40.
51. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9.
52. Azmi W. Arthrobacter as biofactory of therapeutic enzymes. Int J Pharm Pharm Sci 2018;11:1.
53. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK, et al. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol Lett 2006;261:102-8.
54. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 2008;74:1357-66.
55. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002;417:141-7.
56. Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 2005;
57. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001;19:627-62.
58. Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2010;1:9-16.
59. Fischetti VA. Bacteriophage lytic enzymes: Novel anti-infectives. Trends Microbiol 2005;13:491-6.
60. Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 2003;71:6199-204.
61. Courchesne NM, Parisien A, Lan CQ. Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol 2009;3:37-45.
62. O’Flaherty S, Ross RP, Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 2009;33: 801 19.
63. Zhang HB, Wang C, Zhang LH. The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 2004;52:1389-401.
64. Paul D, Kim YS, Ponnusamy K, Kweon JH. Application of quorum quenching to inhibit biofilm fermentation. Environ Eng Sci 2010;86:1267-79. Available from: https://www.link.springer.com/ article/10.1007/s00253-010-2521-7.
65. Teiber JF, Horke S, Haines DC, Chowdhary PK, Xiao J, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.
66. Stoltz DA, Ozer EA, Ng CJ, Yu JM, Reddy ST, Lusis AJ. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 292:L852-60.
67. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of Mammalian species. FEBS Lett 2005;579:3713-7.
68. Widmer KW, Jesudhasan PR, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A Salmonella enterica serotype typhimurium luxS mutant in response to autoinducer AI-2 and poultry meat-derived AI-2 inhibitor. Foodborne Pathog Dis 2007; 4:5-15.
69. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001;19:627-62.
70. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005;253:29-37.
71. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9.
72. Al-Hussaini R, Mahasneh AM. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 2009;14:3425-35.
73. Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, Hougen HP. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 2005;151:373-83.
74. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 2008;52:198-203.
75. Fatima Q, Zahin M, Khan MS, Ahmad I. Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 2010;50:238-42.
76. Götz C, Fekete A, Gebefuegi I, Forczek ST, Fuksová K, Li X. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 2007;389:1447-57.
77. Tsuge H, Nishimura T, Tada Y, Asao T, Turk D, Turk V, et al. Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain-CLIK148 complex. Biochem Biophys Res Commun 1999;266:411-6.
78. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 2001;67:3174-9.
79. Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 2000;66:2079-84.
80. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 2004;88:630-42.
81. Alkawash MA, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 2006;114:131-8.
82. Gacesa P. Alginate-modifying enzymes: A proposed unified mechanism of action for the lyases and epimerases. FEBS Lett 1987; 212:199-202.
83. Lamppa JW, Ackerman ME, Lai JI, Scanlon TC, Griswold KE. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity. PLoS One 2011; 6:e17042.
84. Bedford MR, Cowieson AJ. Exogenous enzymes and their effects on intestinal microbiology. Anim Feed Sci Technol 2012;173:76-85.
85. Adeola O, Cowieson AJ. Board invited review: opportunities and challenges in using exogenous enzymes to improve no ruminant animal production. J Anim Sci 2011;89:3189-218.
86. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, et al. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front Microbiol 2014;5:217.
87. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR. Biofilms: Importance and applications. Ind J Biotechnol 2009;8:159-68.
88. Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol J 2013;8:97-109.
89. Andrea G, Giovanna P, Silvia FN. Antimicrobial peptides: An overview of a promising class of therapeutics. Central Eur J Biol 2007;2:1-33.
90. Atousa A, Rasoul R, Giti E, Fatemeh M, Alireza G. Identification and primary characterization of a plant antimicrobial peptide with remarkable inhibitory effects against antibiotic resistant bacteria. Afr J Biotechnol 2012;11:9672-6.
91. Kamysz W. Are antimicrobial peptides an alternative for conventional antibiotics? Nucl Med Rev Cent East Eur 2005;8:78-86.
92. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Go?dzicka-Józefiak A, et al. Plant antimicrobial peptides. Folia Microbiol (Praha) 2014;59:181-96.
93. Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q, et al. Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 2006;13:1101-7.
94. Rathinakumar R, Walkenhorst WF, Wimley WC. Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: The importance of interfacial activity. J Am Chem Soc 2009;131:7609-17.
95. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006;24:1551-7.
96. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva- Pereira I, Kyaw CM, et al. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013;4:353.
97. Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4:529-36.
98. Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, et al. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016;191:51-80.
99. Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3:238-50.
100. Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim Biophys Acta 1997;1327:119-30.
101. Zhang G, Lin X, Long Y, Wang Y, Zhang Y, Mi H, et al. A peptide fragment derived from the T-cell antigen receptor protein alpha-chain adopts beta-sheet structure and shows potent antimicrobial activity. Peptides 2009;30:647-53.
102. Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 2009;1788:1687-92.
103. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88.
104. Field D, Cotter P, Hill C, Ross RP. Bacteriocin biosynthesis, structure, and function. In: Riley MA, Gillor O, editors. Research and Applications in Bacteriocins. Vol. 4. Amhers, USA: Horizon Bioscience; 2007. p. 5-41.
105. Diep DB, Axelsson L, Grefsli C, Nes IF. The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 2000;146 (Pt 9):2155-60.
106. Rodríguez JM, Martínez MI, Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 2002;42:91-121.
107. Tahiri I, Desbiens M, Benech R, Kheadr E, Lacroix C, Thibault S, et al. Purification, characterization and amino acid sequencing of divergicin M35: A novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol 2004;97:123-36.
108. Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4:529-36.
109. Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta 2002;216:193-202.
110. Portieles R, Ayra C, Borras O. Basic insight on plant defensins. Biotecnol Apl 2006;23:75-8.
111. Avato P, Bucci R, Tava A, Vitali C, Rosato A, Bialy Z, et al. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother Res 2006;20:454-7.
112. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 2000;18:1307-10.
113. Kumar DV, Sati OP, Tripathi MK, Kumar A. Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci 2009;5:297- 300. Available from: https://www.pdfs.semanticscholar.org/ a1a0/0551732c823beb0a410abe9627d3c9c3243d.pdf.
114. Saima R, Azra K. Isolation and characterization of peptide(s) from Pisum sativum having antimicrobial activity against various bacteria. Pak J Bot 2011;43:2971-8. Available from: https://www.pdfs.semanticscholar. org/5530/e062a38161d084b6b64be8350a59df4bf29d.pdf.
115. Ng JH, Ilag LL. Cryptic protein fragments as an emerging source of peptide drugs. IDrugs 2006;9:343-6.
116. Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 2014; 62:9211-22.
117. Nair R, Chabhadiya R, Chanda S. Marine algae: Screening for a potent antibacterial agent. J Herb Pharmacother 2007;7:73-86.
118. Beaulieu L, Bondu S, Doiron K, Rioux LE, Turgeon SL. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina long cruris and identification of peptides implied in bioactivity. J Funct Foods 2015;17:685-97.
119. Vondruskova H, Slamova R, Trckova M, Zraly Z, Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet Med 2010;55:199-224.
120. Hashemi SR, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun 2011;35:169-80.
121. Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 2008;86:E140-8.
122. Simões M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 2009;26:746-57.
123. Scalbert A. Antimicrobial properties of tannins. Phytochemistry 1991; 30:3875-83.
124. Karou D, Savadogo A, Canini A, Yameogo S, Montesano C, Simpore J. Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol 2005;4:1452-7. Available from: http://www.cerbafaso.org/textes/ publications/34ph_alkalo.pdf.
125. Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 1999;63:708-24.
126. Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010;109:515-27.
127. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, et al. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2006;103:7460-4.
128. Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2010;76:243-53.
129. Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition by epigallocatechin gallate (EGCg) of conjugative R plasmid transfer in Escherichia coli. J Infect Chemother 2001;7:195-7.
130. Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 2008;125:204-8.
131. Chauhan MK, Malik S. Evaluation of phytochemicals and synergistic interaction between plant extracts and antibiotics for efflux pump inhibitory activity against Salmonella enterica serovar typhimurium strains. Int J Pharm Pharm Sci 2016;8:7-11.
132. Nair R, Chabhadiya R, Chanda S. Marine algae: Screening for a potent antibacterial agent. J Herb Pharmacother 2007;7:73-86.
133. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011;55:2655-61.
134. Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 2009;160:144-51.
135. Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T, Givskov M. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 2009;53:2432-43.
136. Warnke PH, Becker ST, Podschun R, Sivananthan S, Springer IN, Russo PA, et al. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Craniomaxillofac Surg 2009;37:392-7.
137. Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010;17:1061-6.
138. van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 2009;48:440-6.
139. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 2001;91:453-62.
140. Iwami Y, Kawarada K, Kojima I, Miyasawa H, Kakuta H, Mayanagi H, et al. Intracellular and extracellular pHs of Streptococcus mutans after addition of acids: Loading and efflux of a fluorescent pH indicator in streptococcal cells. Oral Microbiol Immunol 2002;17:239-44.
141. Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009;20:1073-9.
142. Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006;43:489-94.
Statistics
92 Views | 103 Downloads
How to Cite
EMTENAN M HANAFI, and ENAS N DANIAL. “NATURAL ANTIMICROBIALS IN THE PIPELINE AND POSSIBLE SYNERGISM WITH ANTIBIOTICS TO OVERCOME MICROBIAL RESISTANCE”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 12, no. 4, Mar. 2019, pp. 15-21, https://innovareacademics.in/journals/index.php/ajpcr/article/view/30926.
Section
Review Article(s)