DFT Calculations and In Silico Studies on the Schiff base derivatives with Antibacterial Activities

Authors

  • HELEN P KAVITHA SRMIST, ramapuram
  • ARTHI P
  • ARULMURUGAN S
  • KAVIPRIYA R
  • JASMINE P VENNILA

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i5.32128

Keywords:

Keywords: Heterocyclic Schiff bases, DFT calculations, NLO, Antibacterial, In silico studies

Abstract

Abstract

            The heterocyclic Schiff bases (N1Z,N4Z)-N1,N4-bis(3,4-methoxyphenyl)methylidene) benzene-1,4-diamine (1), (N1Z,N4Z)-N1,N4-bis(4-bromobenzylidene)benzene-1,4-diamine (2) and (N1Z,N4Z)-N1,N4-bis(furan-2-ylmethyliden)benzene-1,4-diamine (1) were synthesized by the reported procedure. The molecular structure of the compounds (13) was characterized by FT‒IR and 1H NMR. The bond length, bond angle and HOMO‒LUMO energy gap were calculated out by DFT calculations. The synthesized heterocyclic compounds (13) were screened for their antibacterial activity against Staphylococcus aureus and Escherichia coli. The compound 3 displays superior antibacterial activity compared to standard drug Streptomycin. All the compounds significantly interact with antibacterial protein beta-ketoacyl-acp synthase III and anticancer protein c-Kit tyrosine kinase via p–p, σ–p, hydrogen bonding, electrostatic and van der Waals interactions.

Downloads

Download data is not yet available.

References

Reference
[1] X. Zhang, H. Wang, Y. L. R. Cao, Molecules 18 (2013) 5059?5071.
[2] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 57 (2014) 10257?10274.
[3] Z. Cimerman, S. Miljanic, N. Galic, Croat. Chem. Acta 73 (2000) 81?95.
[4] P. Singh, R. L. Goel, B. P. Singh, J. Indian Chem. Soc. 52 (1975) 958.
[5] A. Elmali, M. Kabak, Y. Elerman, J. Mol. Struct. 477 (2000) 151.
[6] P. R. Patel, B. T. Thaker, S. Zele, Indian. J. Chem. 38A (1999) 563.
[7] B. F. Berry, A. E. Beezer, R. J. Miles, B. W. Smith, J. Miller, M. G. Nascimento, Microbois. 45 (1988) 181.
[8] J. F. Lawrence, R.W. Frei, “Chemical Derivatization in Chromatography”, Elsevier, Amsterdam (1976).
[9] R. Thilagavathi, Helen P Kavitha, Rajaram Arulmozhi and Sunil Manohar Babu, Molbank, M589 (2009) 1-3.
[10] B. Sain, J.S. Sandhu, Indian J. Chem 31 (1992) 768-770.
[11] Z. Guo, R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang, Carbohydra. Res. 342 (2007) 1329–1332.
[12] I. Ahmed, A.J. Beg, J. Enthnopharmacol. 74 (2001) 113–123.
[13] Z. Bikadi, E. Hazai, J. Cheminform. 1 (2009) 15–20.
[14] T. A. Halgren, J. Comput. Chem. 17 (1998) 490–519.
[15] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem. 19 (1998) 1639–1662.
[16] F. J. Solis, R. J. B. Wets, Math. Oper. Res. 6 (1981) 19?30.
[17] N. Raman, C. Thangaraja, Trans. Met. Chem. 30 (1005) 317–322.
[18] H. H. Sabah, Der. Pharma Chemica 6 (2014) 38–41.
[19] N. Uludag, G. Serdaroglu, J. Mol. Struct. (2017) 10.1016/j.molstruc.2017.11.032.
[20] T. Kavitha, G. Velraj, J. Mol. Struct. (2017) 10.1016/j.molstruc.2017.11.031.
[21] M. Karabacak, Z. Cinar, M. Cinar, Spectrochim. Acta Part A 79 (2011) 1511–1519.
[22] J. Prashanth, B. V. Reddy, J. Mol. Struct. (2017) 10.1016/j.molstruc.2017.11.049.
[23] A. E?me, S. G. Sa?d?nç, J. Mol. Struct. 1147 (2017) 322–334.
[24] B. G. Oliveira, E. M. Duarte, R. C. M. U. Araújo, M. N. Ramos, A. B. Carvalho, Spectrochim. Acta Part A 61 (2005) 491–494.
[25] R. Rahmani, N. Boukabcha, A. Chouaih, F. Hamzaoui, S. Goumri-Said, J. Mol. Struct. 1155 (2018) 484–495.

Published

07-05-2019

How to Cite

KAVITHA, H. P. ., . A. P, A. S, K. . R, and J. P. . VENNILA. “DFT Calculations and In Silico Studies on the Schiff Base Derivatives With Antibacterial Activities”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 5, May 2019, pp. 321-8, doi:10.22159/ajpcr.2019.v12i5.32128.

Issue

Section

Original Article(s)