• KONDAPURAM PARAMESHWAR School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India.
  • SAGAR PAMU School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India.
  • KOSIKA SANDEEP School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India.
  • CHINDAM SURESH School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India.


Coronaviruses (CoVs), incorporated positive-sense RNA diseases, are depicted by the club-like spikes that adventure from their surface, an abnormally huge RNA genome, and a specific replication technique. CoVs cause a selection of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory sickness in chickens too possibly deadly human respiratory diseases. Here, we provide a quick presentation to CoVs talking about their replication and pathogenicity, and current avoidance and treatment techniques. We likewise mention the episodes of the profoundly pathogenic severe acute respiratory syndrome CoV (SARS-CoV) and thus the recently identify Middle Eastern respiratory syndrome CoV (MERS-CoV).

Keywords: Coronaviruses, Positive-sense RNA infections, Respiratory syndrome


1. Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 2009;106:3484-9.
2. Barcena M, Oostergetel GT, Bartelink W. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci U S A 2009;106:582-7.
3. Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006;80:7918-28.
4. Godet M, Haridon R, Vautherot JF, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology 1992;188:666-75.
5. DeDiego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 2007;81:1701-13.
6. Chang CK, Sue SC, Yu TH, Hsieh CM, Tsai CK, Chiang YC, et al. Modular organization of SARS coronavirus coronavirus introduction 18 nucleocapsid protein. J Biomed Sci 2006;13:59-72.
7. Hurst KR, Koetzner CA, Masters PS identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009;83:7221-34.
8. Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Virol 1988;62:4288-95.
9. Molenkamp R, Spaan WJ. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology 1997;239:78-86.
10. Kuo L, Masters PS. Functional analysis of the murine coronavirus genomic RNA packaging signal. J Virol 2013;87:5182-92.
11. Hurst KR, Koetzner CA, Masters PS. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase transcriptase complex. J Virol 2013;87:9159-72.
12. Sturman LS, Holmes KV, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 1980;33:449-62.
13. Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R, et al. Identification of a coronavirus hemagglutinin esterase with a substrate specifi city different from those of influenza C virus and bovine coronavirus. J Virol 1999;73:3737-43.
14. Cornelissen LA, Wierda CM, van der Meer FJ, Herrewegh AA, Horzinek MC, Egberink HF, et al. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 1997;71:5277-86.
15. Kazi L, Lissenberg A, Watson R, Groot RJ, Weiss SR. Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J Virol 2005;79:15064-73.
16. Lissenberg A, Vrolijk MM, van Vliet AL, Langereis MA, de Groot-Mijnes JD, Rottier PJ, et al. Luxury at a cost recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2005;79:15054-63.
17. Cheng PK, Wong DA, Tong LK, Lau CS, Yeung EY, Lim WW, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet 2004;363:1699-700.
18. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009;106:5871-6.
19. Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT, et al. Programmed ribosomal frame shifting in decoding the SARS-CoV genome. Virology 2005;332:498-510.
20. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frame shifting signal: Requirement for an RNA pseudoknot. Cell 1989;57:537-47.
21. Araki K, Gangappa S, Dillehay DL, Rouse BT, Larsen CP, Ahmed R. Pathogenic virus-specifi c T cells cause disease during treatment with the calcineurin inhibitor FK506: Implications for transplantation. J Exp Med 2010;207:2355-67.
22. Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000;81:853-79.
23. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003;331:991-1004.
24. Sethna PB, Hofmann MA, Brian DA. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol 1991;65:320-5.
25. Brown CG, Nixon KS, Senanayake SD. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol 2007;81:7716-24.
26. Guan BJ, Wu HY, Brian DA. An optimal cis-replication stem-loop IV in the 5’ untranslated region of the mouse coronavirus genome extends 16 nucleotides into open reading frame 1. J Virol 2011;85:5593-605.
27. Liu P, Li L, Keane SC. Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions. J Virol 2009;83:12084-93.
28. Raman S, Bouma P, Williams GD, Brian DA. Stem-loop III in the 5’ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol 2003;77:6720-30.
29. Liu Q, Johnson RF, Leibowitz JL. Secondary structural elements within the 3’ untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 2001;75:12105-13.
30. Goebel SJ, Miller TB, Bennett CJ, Bernard KA, Masters PS. A hypervariable region within the 3’ cis- acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J Virol 2007;81:1274-87.
31. Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3’ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 1999;73:8349-55.
32. Hsue B, Masters PS. A bulged stemloop structure in the 3’ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 1997;71:7567-78.
33. Hsue B, Hartshorne T, Masters PS. Characterization of an essential RNA secondary structure in the 3’ untranslated region of the murine coronavirus genome. J Virol 2000;74:6911-21.
34. Sawicki SG, Sawicki DL, Siddell SG. Contemporary view of coronavirus transcription. J Virol 2007;81:20-9.
35. Bentley K, Keep SM, Armesto M, Britton P. Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses. J Virol 2013;87:2128-36.
36. Keck JG, Makino S, Soe LH, Fleming JO, Stohlman SA, Lai MM. RNA recombination of coronavirus. Adv Exp Med Biol 1987;218:99-107.
37. Lai MM, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol 1985;56:449-56.
38. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 1994;124:55-70.
39. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in saccells: Determination of the first site of budding of progeny virions. Eur J Cell Biol 1984;33:281-93.
40. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res 2005;64:165-230.
41. Bos EC, Luytjes W, van der Meulen HV, Koerten HK, J Spaan WJ. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 1996;218:52-60.
42. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 2008;82:11318-30.
43. Raamsman MJ, Locker JK, de Hooge A, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 2000;74:2333-42.
44. Corse E, Machamer CE Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol 2000;74:4319-26.
45. Fischer F, Stegen CF, Masters PS, Samsonoff WA. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 1998;72:7885-94.
46. Boscarino JA, Logan HL, Lacny JJ, Gallagher TM. Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol 2008;82:2989-99.
47. Ye Y, Hogue BG. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol 2007;81:3597-607.
48. Hurst KR, Kuo L, Koetzner CA, Ye R, Hsue B, Masters PS. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J Virol 2005;79:13285-97.
49. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009;7:439-50.
50. Mihindukulasuriya KA, Wu G, Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol 2008;82:5084-8.
51. He B, Zhang Y, Xu L, Yang W, Feng Y, Xia L, et al. Identification of diverse alphacoronaviruses Coronavirus Introduction 20 and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in china. J Virol 2014;88:7070-82.
52. Lauber C, Ziebuhr J, Junglen S, Drosten C, Zirkel F, Thi Nga P, et al. Mesoniviridae: A proposed new family in the order nidovirales formed by a single species of mosquito-borne viruses. Arch Virol 2012;157:1623-8.
53. Levy GA, Liu M, Ding J, Yuwaraj S, Leibowitz J, Marsden PA, et al. Molecular and functional analysis of the human prothrombinase gene (HFGL2) and its role in viral hepatitis. Am J Pathol 2000;156:1217-25.
54. Lampert PW, Sims JK, Kniazeff AJ. Mechanism of demyelination in JHM virus encephalomyelitis. Acta Neuropathol 1973;24:76-85.
55. Weiner LP. Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus). Arch Neurol 1973;28:298-303.
56. Wu GF, Dandekar AA, Pewe L, Perlman S. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J Immunol 2000;165:2278-86.
57. Wang F, Stohlman SA, Fleming JO. Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J Neuroimmunol 1990;30:31-41.
58. Wu GF, Perlman S. Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus. J Virol 1999;73:8771-80.
59. McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA 1967;58:2268-73.
60. Bradburne AF, Bynoe ML, Tyrell DA. Effects of a “new” human respiratory virus in volunteers. Br Med J 1967;3:767-9.
61. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 1996;121:190-3.
62. Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005;79:884-95.
63. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout R, Wolthers KC, et al. Identification of a new human coronavirus. Nat Med 2004;10:368-73.
64. Chibo D, Birch C. Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol 2006;87:1203-8.
65. Vijgen L, Keyaerts E, Lemey P, Moës E, Li S, Vandamme AM, et al. Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology 2005;337:85-92.
66. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 2003;302:276-8.
67. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong HL, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 2005;102:14040-5.
68. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005;310:676-9.
69. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503:535-8.
70. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med 2003;349:2431-41.
71. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003;361:1767-72.
72. Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT. Interaction of severe acute respiratory syndrome- associated coronavirus with dendritic cells. J Gen Virol 2006;87:1953-60.
73. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk YO, et al. Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells. Blood 2005;106:2366-76.
74. Lau YL, Peiris JS. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol 2005;17:404-10.
75. Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol 2005;79:5833-8.
76. Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirusinfected mice. J Virol 2010;84:9318-25.
77. Zhao J, Legge K, Legge K, Perlman S. Agerelated increases in PGD(2) expression impair respiratory DC migration, resulting in dimin Anthony R. Fehr and Stanley Perlman 21 ished T cell responses upon respiratory virus infection in mice. J Clin Invest 2011;121:4921-30.
78. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus DM, Fouchier AM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-20.
79. Meyer B, Muller MA, Corman VM, Reusken BE, Ritz D, Godeke GJ, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 2014;20:552-9.
80. Eckerle I, Corman VM, Muller MA, Lenk M, Ulrich RG, Drosten C. Replicative capacity of MERS coronavirus in livestock cell lines. Emerg Infect Dis 2014;20:276-9.
81. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah A, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014;20:1012-15.
82. Raj VS, Mou H, Smits SL, Dekkers DH, Müller, MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus EMC. Nature 2013;495:251-4.
83. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA 2014;111:4970-5.
84. Emery SL, Erdman DD, Bowen MD, Newton BR, Winchell JM, et al. Real-time reverse transcriptionpolymerase chain reaction assay for SARS associated coronavirus. Emerg Infect Dis 2004;10:311-6.
85. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010;48:2940-7.
86. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. Lancet 2003;362:293-4.
87. Laude H, Van Reeth K, Pensaert M. Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet Res 1993;24:125-50.
88. Saif LJ. Animal coronavirus vaccines: Lessons for SARS. Dev Biol (Basel) 2004;119:129-40.
89. Wang L, Junker D, Collisson EW. Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 1993;192:710-6.
90. Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, Horzinek MC, et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 1990;64:1407-9.
91. Netland J, DeDiego ML, Zhao J, Fett C, Álvarez E, Nieto-Torres JL, et al. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology 2010;399:120-8.
92. de Haan CA, Volders H, Koetzner CA, Masters PS, Rottier PJ. Coronaviruses maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J Virol 2002;76:12491-502.
93. Yount B, Roberts RS, Lindesmith L, Baric RS. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombinationresistant genome. Proc Natl Acad Sci U S A 2006;103:12546-51.
94. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired-fi delity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 2012;18:1820-6.
95. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1992;357:420-2.
96. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 2005;102:7988-93.
97. Delmas B, Gelfi J, L’Haridon R, Vogel LK, Sjöström H, Norén O, et al. Aminopeptidase N is a major receptor for the coronavirus introduction 22 entero-pathogenic coronavirus TGEV. Nature 1992;357:417-20.
98. Li BX, Ge JW, Li YJ. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 2007;365:166-72.
99. Tresnan DB, Levis R, Holmes KV. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 1996;70:8669-74.
100. Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B. Interspecies aminopeptidase-N chimeras reveal species-specifi c receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol 1997;71:734-7.
101. Nedellec P, Dveksler GS, Daniels E, Turbide C, Chow B, Basile AA, et al. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J Virol 1994;68:4525-37.
102. Williams RK, Jiang GS, Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 1991;88:5533-6.
103. Schultze B, Herrler G. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 1992;73(Pt 4):901-6.
104. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-4.
105. Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate. J Virol 2011;85:638-43.
106. Kamitani W, Huang C, Narayanan K, Lokugamage KG, MakinoS. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol 2009;16:1134-40.
107. Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 2006;103:12885-90.
108. Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specifi c translational shutoff of host mRNA. J Virol 2012;86:11128-37.
109. Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 2005;79:13399-411.
110. Cornillez-Ty CT, Liao L, Yates JR 3rd, Kuhn K, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 2009;83:10314-8.
111. Chatterjee A, Johnson MA, Serrano P, Pedrini B, Joseph JS, Neuman W, et al. Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J Virol 2009;83:1823-36.
112. Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, et al. Structural and functional basis for ADPribose and poly (ADP-ribose) binding by viral macro domains. J Virol 2006;80:8493-502.
113. Eriksson KK, Cervantes-Barragan L, Ludewig B, Ludewig B, Thiel V. Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1”- phosphatase, a viral function conserved in the alpha-like supergroup. J Virol 2008;82:12325-34.
431 Views | 314 Downloads
How to Cite
PARAMESHWAR, K., S. PAMU, K. SANDEEP, and C. SURESH. “A REVIEW NOVEL CORONAVIRUS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 13, no. 4, Mar. 2020, pp. 12-17, doi:10.22159/ajpcr.2020.v13i4.36982.
Review Article(s)