RECENT STRATEGIES FOR EFFICIENT SYNTHESIS AND BIOLOGICAL ACTIVITIES OF COUMARIN-CHALCONE DERIVATIVES

  • SATHISH KUMAR KONIDALA Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India.
  • JITHENDRA CHIMAKURTHY
  • VIJAY KOTRA Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India.

Abstract

Coumarins and chalcones are potential pharmacological and biologically active molecules obtained from natural source. Coumarins have predominant pharmacological activities such as antidiabetic, antitumor, and anti-inflammatory activity. Chalcones are also one of the naturally occurring pharmacologically vital molecules with different activities such as anti-inflammatory, antitumor, antimicrobial, and antimalarial activity. Literature reveals that a huge number of coumarinyl chalcone derivatives have various pharmacological activities. Coumarinyl chalcone derivatives gained more prominence due to their significant biological activities. This work explains the current information about synthesis techniques, pharmacological importance, and clinical applications of coumarinyl chalcone derivatives.

Keywords: Coumarin, Chalcone, derivatives, synthesis, biological activities

References

1. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int 2013;2013:963248.
2. Gottlieb OR, Murray KR, Ohloff G, Pattenden G. Progress in the Chemistry of Organic Natural Products. Berlin: Springer-Verlag Wein; 1978. p. 200.
3. Vogel A. Darstellung von benzoesäure aus der tonka-bohne und aus den Meliloten Oder steinklee-blumen. [Preparation of benzoic acid from Tonka beans and from the flowers of Melilot or sweet clover]. Ann Physik (in German) 1820;64:161-6.
4. Vogel A. De l’existence de l’acide benzoïque dans la fève de Tonka et dans les fleurs de mélilot. [On the existence of benzoic acid in the Tonka bean and in the flowers of melilot]. J Pharm (in French) 1820;6:305-9.
5. Pechmann HV, Duisberg C. ???. Chem Tech Ber 1884;17:927.
6. Knoevenagel E. On the chemistry of the condensing action of ammonia and organic amines in reactions between aldehydes and acetoacetic ester. Ber Dtsch Chem Ges 1898;31:738-48.
7. Johnson JR. Perkin reaction and related reactions. Org React 1942;1:210-65.
8. Bert L. ???. Compt Rend 1942;214:230.
9. Shirner RL. ???. Org React 1942;1:1.
10. Yavari I, Hekmat-shoar R, Zonouzi A. A new and efficient route to 4-carboxymethylcoumarins mediated by vinyl triphenyl phosphonium salt. Tetrahedron Lett 1998;39:2391-2.
11. Manolov I, Danchev ND. Synthesis, toxicological and phar-macological assessment of some 4-hydroxycoumarin derivatives. Eur J Med Chem Chim Ther 1995;30:531-6.
12. Wu L, Wang X, Xu W, Farzaneh F, Xu R. The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem 2009;16:4236-60.
13. Kulkarni MV, Kulkarni GM, Lin CH, Sun CM. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr Med Chem 2006;13:2795-818.
14. Ostrov DA, Prada JA, Corsino PE, Finton KA, Le N, Rowe TC. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob Agents Chemother 2007;51:3688-98.
15. Gormley NA, Orphanides G, Meyer A, Cullis PM, Maxwell A. The interaction of coumarin antibiotics with fragments of the DNA gyrase B protein. Biochemistry 1996;35:5083-92.
16. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 2004;10:3813-33.
17. Bansal Y, Sethi P, Bansal G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med Chem Res 2013;22:3049-60.
18. Riveiro ME, Moglioni A, Vazquez R, Gomez N, Facorro G, Piehl L, et al. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg Med Chem 2008;16:2665-75.
19. Kashman Y, Gustafson KR, Fuller RW, McMahon JB, Currens MJ, Buckheit JR, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 1992;35:2735-43.
20. Shikishima Y, Takaishi Y, Honda G, Ito M, Takfda Y, Kodzhimatov OK, et al. Chemical constituents of prangos tschiniganica; structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity. Chem Pharm Bull 2001;49:877.
21. Manvar A, Bavishi A, Radadiya A, Patel J, Vora V, Dodia N, et al. Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains. Bioorg Med Chem Lett 2011;21:4728-31.
22. Karal N, Kocabalkanl A, Gursoy A, Ates O. Synthesis and antitubercular activity of 4-(3-coumarinyl)-3-cyclohexyl-4-thiazolin-2-one benzylidenehydrazones. Farmaco 2002;57:589-93.
23. Yeh JY, Coumar MS, Horng JT, Shiao HY, Kuo FM, Lee HL, et al. Anti-influenza drug discovery: Structure activity relationship and mechanistic insight into novel angelicin derivatives. J Med Chem 2010;53:1519-33.
24. Anand P, Singh B, Singh N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 2012;20:1175-80.
25. Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancinni F, et al. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 2008;18:423-6.
26. Curini M, Epifano F, Maltese F, Marcotullio MC, Gonzales SP, Rodriguez JC. Synthesis of collinin, an antiviral coumarin. Aust J Chem 2003;56:59-60.
27. Yuce B, Danis O, Ogan A, Sener G, Bulut M, Yarat A. Antioxidative and lipid lowering effects of 7, 8-dihydroxy-3-(4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung 2009;59:129-34.
28. Madhavan GR, Balraju V, Mallesham B, Chakrabarti R, Lohray VB. Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg Med Chem Lett 2003;13:2547-51.
29. Namba T, Morita O, Huang SL, Goshima K, Hattori M, Kakiuchi N. Studies on cardio-active crude drugs; I. Effect of coumarins on cultured myocardial cells. Plant Med 1988;54:277-82.
30. Baek NI, Ahn EM, Kim HY, Park YD. Furanocoumarins from the root of Angelica dahurica. Arch Pharm Res 2000;23:467-70.
31. Luszczki JJ, Wojda E, Andres-Mach M, Cisowski W, Glensk M, Glowniak K, et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study. Epilepsy Res 2009;85:293-9.
32. Yusupov MI, Sidyakin GP. Fraxidin and isofraxidin from Artemisia scotina. Chem Nat Compd 1975;11:94.
33. Shin E, Choi KM, Yoo HS, Lee CK, Hwang BY, Lee M. ???. Biol Pharm Bull 2010;33:1610-4.
34. Tinel M, Belghiti J, Descatoire V, Amouyal G, Letteron P, Geneve J, et al. Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem Pharmacol 1987;36:951-5.
35. Kharasch ED, Hankins DC, Taraday JK. Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity. Drug Metab Dispos 2000;28:28-33.
36. Wang C, Pei A, Chen J, Yu H, Sun ML, Liu CF, et al. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. J Neurochem 2012;121:1007-13.
37. Khan IA, Kulkarni MV, Gopal M, Shahabuddin MS, Sun CM. Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. Bioorg Med Chem Lett 2005;15:3584-7.
38. Ghate M, Kusanur AR, Kulkarni VM. Synthesis and in vivo analgesic and anti-inflammatory activity of some bi heterocyclic coumarin derivatives. Eur J Med Chem 2005;40:882-7.
39. Wanare G, Aher R, Kawathekar N, Ranjan R, Kaushik NK, Sahal D. Synthesis of novel ?-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorg Med Chem Lett 2010;20:4675-8.
40. Tegginamath G, Kamble RR, Kattimani PP, Margankop SB. Synthesis of 3-aryl-4-({2-[4-(6-substituted-coumarin-3-yl)-1, 3-thiazol-2-yl] hydrazinylidene} methyl/ethyl)-sydnones using silica sulfuric acid and their antidiabetic, DNA cleavage activity. Arab J Chem 2016;9:S306-12.
41. Liu XH, Li J, Shi JB, Song BA, Qi XB. Design and synthesis of novel 5-phenyl-N-piperidine ethanone containing 4, 5-dihydropyrazole derivatives as potential antitumor agents. Eur J Med Chem 2012;51:294-9.
42. Chen Y, Wang S, Xu X, Liu X, Yu M, Zhao S, et al. Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem 2013;56:4671-90.
43. Chen X, Pi R, Zou Y, Liu M, Ma X, Jiang Y, et al. Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole, a natural coumarin. Eur J Pharmacol 2010;629:40-6.
44. Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci 1999;65:337-53.
45. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 2011;6:125-5.
46. Guida A, Lhouty MH, Tichit D, Figueras F, Geneste P. Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Appl Catal A Gen 1997;164:251-64.
47. Romanelli G. Pasquale G, Sathicq A, Thomas H, Autino J, Vazquez P. ???. J Mol Catal A Chem 2011;340:24.
48. Climent M, Corma A, Iborra S, Velty A. ???. J Catal 2004;221:474-82.
49. Dhar DN. The Chemistry of Chalcones and Related Compounds. New York: Wiley; 1981.
50. Eddarir S, Cotelle N, Bakkour Y, Rolando C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett 2003;44:5359-63.
51. Bohm BA. Introduction to Flavonoids. United Kingdom: Harwood Academic Publishers; 1998.
52. Fukui K, Matsumoto T, Nakamura S, Nakayama M, Horie T. Synthetic studies of the flavone derivatives. VII. The synthesis of jaceidin. Bull Chem Soc Jpn 1968;41:1413-7.
53. Al-Masum M, Ng E, Wai MC. Palladium-catalyzed direct cross-coupling of potassium styryltrifluoroborates and benzoyl chlorides a one step method for chalcone synthesis. Tetrahedron Lett 2011;52:1008-10.
54. Srivastava YK. Ecofriendly microwave assisted synthesis of some chalcones. Rasayan J Chem 2008;1:884-6.
55. Kumar A, Sharma S, Tripathi VD, Srivastava S. Synthesis of chalcones and flavanones using Julia Kocienski olefination. Tetrahedron 2010;66:9445-9.
56. Zangade S, Mokle S, Vibhute A, Vibhute Y. An efficient and operationally simple synthesis of some new chalcones by using grinding technique. Chem Sci J 2011;13:1-6.
57. Thati B, Noble A, Rowan R, Creaven BS, Walsh M, McCann M, et al. Mechanism of action of coumarin and silver (I)-coumarin complexes against the pathogenic yeast Candida albicans. Toxicol In Vitro 2007;21:801-8.
58. Bagihalli GB, Avaji PG, Patil SA, Badami PS. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of co(II), Ni(II) and cu(II) complexes With 1,2,4-triazole schiff bases. Eur J Med Chem 2008;43:2639-49.
59. Rehman SU, Chohan ZH, Gulnaz F, Supuran CT. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J Enz Inhib Med Chem 2005;20:333-40.
60. Piller NB. A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Br J Exp Pathol 1975;56:554-9.
61. Satyajit S, Lutfun N. Text Book of Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry. England: John Wiley and Sons Ltd.; 2007.
62. Huang GJ, Deng JS, Liao JC. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J Agric Food Chem 2012;60:1673-81.
63. Rosselli S, Maggio AM, Faraone N.The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat Prod Commun 2009;4:1701-6.
64. Choi J, Lee KT, Ka H, Jung WT, Jung HJ, Park HJ. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch Pharm Res 2001;24:418-23.
65. Portugal JC. Chartreusin, elsamicin A and related anti-cancer antibiotics. Curr Med Chem Anticancer Agents 2003;3:411-20.
66. Whang WK, Park HS, Ham I. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp Mol Med 2005;37:436-46.
67. Spino C, Dodier M, Sotheeswaran S. Anti-HIV coumarins from Calophyllum seed oil. Bioorg Med Chem Lett 1998;8:3475-8.
68. Patil AD, Freyer AJ, Eggleston DS. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 1993;36:4131-8.
69. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, et al. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 1992;35:2735-43.
70. Basile A, Sorbo S, Spadaro V. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 2009;14:939-52.
71. Kim SH, Kang KA, Zhang R, Piao MJ, Ko DO, Wang ZH, et al. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species. Acta Pharmacol Sin 2008;29:1319-26.
72. Hirsch AM, Longeon A, Guyot M. Fraxin and esculin: Two coumarins specific to Actinidia chinensis and A. deliciosa (kiwifruit). Biochem Syst Ecol 2002;30:55-60.
73. Aoyama Y, Katayama T, Yamamoto M, Tanaka H, Kon K. A new antitumor antibiotic product, demethylchartreusin. Isolation and biological activities. J Antibiot 1992;45:875-8.
74. Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, Ansell J, et al. Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001;119:8S-21S.
75. Cohen AJ. Critical review of the toxicology of coumarin with special reference to interspecies differences in metabolism and hepatotoxic responce and their significance to man. Food Cosmet Toxicol 1979;17:277-89.
76. Chiang CC, Cheng MJ, Peng CF, Huang HY, Chen IS. A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem Biodivers 2010;7:1728-36.
77. Pushpalatha G, Pramod N, Basha GM, Deepa M, Neelaphar P, Swamy BH. Design, synthesis and anti-malarial activity of coumarin fused quinoline derivatives. J Pharm Res 2016;10:437-41.
78. Beyer H, Hohn H, Lassing W, Studies on compounds consisting thiazole and 2-azetidinone heterocycles. Chem Abstr 1954;47:11183.
79. Li X, Zhao Y, Wang T, Shi M, Wu F. Coumarin derivatives with enhanced two-photon absorption cross-sections. Dyes Pigm 2007;74:108-12.
80. Moodley T, Momin M, Mocktar C, Kannigadu C, Koorbanally NA. The synthesis, structural elucidation and antimicrobial activity of 2-and 4-substituted-coumarinyl chalcones. Magn Reson Chem 2016;54:610-7.
81. Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S. Synthesis and in vitro evaluation of novel coumarin chalcone hybrids as potential anticancer agents. Bioorg Med Chem Lett 2010;20:7205-11.
82. Vazquez-Rodriguez S, Lopez RL, Matos MJ, Armesto-Quintas G, Serra S, Uriarte E, et al. Design, synthesis and antibacterial study of new potent and selective coumarin chalcone derivatives for the treatment of tenacibaculosis. Bioorg Med Chem 2015;23:7045-52.
83. Patel K, Karthikeyan C, Moorthy NH, Deora GS, Solomon VR, Lee H, et al. Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents. Med Chem Res 2012;21:1780-4.
84. Trivedi JC, Bariwal JB, Upadhyay KD, Naliapara YT, Joshi SK, Pannecouque CC, et al. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett 2007;48:8472-4.
85. Prasad YR, Rao AL, Rambabu R. Synthesis and antimicrobial activity of some chalcone derivatives. J Chem 2008;5:461-6.
86. Hafez OM, Nassar MI, El-Kousy SM, Abdel-Razik AF, Sherien MM, El-Ghonemy MM. Synthesis of some new carbonitriles and pyrazolecoumarin derivatives with potent antitumor and antimicrobial activities. Acta Pol Pharm 2014;71:594-601.
87. Balaji PN, Lakshmi LK, Mohan K, Revathi K, Chamundeswari A, Indrani PM. In-vitro anti-inflammatory and antimicrobial activity of synthesized some novel pyrazole derivatives from coumarin chalcones. Pharm Sin 2012;3:685-9.
88. Siddiqui ZN. A convenient synthesis of coumarinyl chalcones using HClO4-SiO2: A green approach. Arab J Chem 2015;12:2788-97.
89. Sun YF, Cui YP. The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes Pigm 2008;78:65-76.
90. Jagtap AR, Satam VS, Rajule RN, Kanetkar VR. Synthesis of highly fluorescent coumarinyl chalcones derived from 8-acetyl-1, 4-diethyl-1, 2, 3, 4-tetrahydro-7H-pyrano [2, 3-g] quinoxalin-7-one and their spectral characteristics. Dyes Pigm 2011;91:20-5.
91. Khode S, Maddi V, Aragade P, Palkar M, Ronad PK, Mamledesai S, et al. Synthesis and pharmacological evaluation of a novel series of 5-(substituted) aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur J Med Chem 2009;44:1682-8.
92. Jayashree BS, Yusuf S, Kumar DV. Synthesis of some coumarinyl chalcones of pharmacological interest. Asian J Chem 2009;21:5918.
93. Pingaew R, Saekee A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, et al. Synthesis, biological evaluation and molecular docking of novel chalcone coumarin hybrids as anticancer and antimalarial agents. Eur J Med Chem 2014;85:65-76.
94. Mahmoud AE, El-Remaily A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chin J Catal 2015;36:1124-30.
95. Rodriguez SV, Guíñez RF, Matos MJ, Azar CO, Maya JD. Synthesis and trypanocidal properties of new coumarin-chalcone derivatives. Med Chem 2015;5:173-7.
96. Deshpande HA, Chopde HN, Pandhurnekar CP, Batra RJ. Synthesis, characterization and testing of biological activity of some novel chalcones derivatives of coumarin. Chem Sci Trans 2013;2:621-7.
97. Hamdi N, Fischmeister C, Puerta MC, Valerga P. A rapid access to new coumarinyl chalcone and substituted chromeno [4, 3-c] pyrazol-4 (1H)-ones and their antibacterial and DPPH radical scavenging activities. Med Chem Res 2011;20:522-30.
98. Spirtovic-Halilovic S, Salihovic M, Dzudzevic-Cancar H, Trifunovic S, Roca S, Softic D, et al. DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety. J Serb Chem Soc 2014;79:435-43.
99. Naruka SG, Mahajan SS. Conventional and microwave assisted synthesis and QSAR studies of coumarinyl chalcones as potent antimicrobial agents. Int J Res Pharm Chem 2011;4:879-90.
100.Quadri-Spinelli T, Heilmann J, Rali T, Sticher O. Bioactive coumarin derivatives from the fern Cyclosorus interruptus. Plant Med 2000;66:728-33.
101.Valente S, Bana E, Viry E, Bagrel D, Kirsch G. Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases. Bioorg Med Chem Lett 2010;20:5827-30.
102.Wei H, Zhang X, Wu G, Yang X, Pan S, Wang Y, et al. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem Toxicol 2013;60:147-52.
103.Dridi D, Abdelwahab AB, Bana E, Chaimbault P, Meganem F, Kirsch G. Synthesis and molecular modeling of some new chalcones derived from coumarine as CDC25 phosphatases inhibitors. Med J Chem 2016;5:323-30.
104.Xi GL, Liu ZQ. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron 2014;70:8397-404.
105.Perez-Cruz F, Vazquez-Rodriguez S, Matos MJ, Herrera-Morales A, Villamena FA, Das A, et al. Synthesis and electrochemical and biological studies of novel coumarin chalcone hybrid compounds. J Med Chem 2013;56:6136-45.
106.Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N. Coumarin chalcone hybrids as peroxyl radical scavengers: Kinetics and mechanisms. J Chem Inf Model 2016;56:662-70.
107.Ahmad I, Thakur JP, Chanda D, Saikia D, Khan F, Dixit S, et al. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg Med Chem Lett 2013;23:1322-5.
108.Yadav DK, Ahmad I, Shukla A, Khan F, Negi AS, Gupta A. QSAR and docking studies on chalcone derivatives for antitubercular activity against M. tuberculosis H37Rv. J Chemom 2014;28:499-507.
Statistics
147 Views | 116 Downloads
Citatons
How to Cite
KONIDALA, S. K., JITHENDRA CHIMAKURTHY, and V. KOTRA. “RECENT STRATEGIES FOR EFFICIENT SYNTHESIS AND BIOLOGICAL ACTIVITIES OF COUMARIN-CHALCONE DERIVATIVES”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 13, no. 5, Apr. 2020, pp. 28-37, doi:10.22159/ajpcr.2020.v13i5.37039.
Section
Review Article(s)