CHEMICAL AND BIOLOGICAL POTENTIAL OF PASSIFLORA VITIFOLIA FRUIT BYPRODUCTS COLLECTED IN THE COLOMBIAN CENTRAL ANDES

  • JENNY AVILA Department of Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima, Ibagué, Colombia, Calle 42 #1b-1. https://orcid.org/0000-0002-6529-4922
  • ANGEL JIMÉNEZ Department of Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima, Ibagué, Colombia, Calle 42 #1b-1.
  • JONH MÉNDEZ Department of Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima, Ibagué, Colombia, Calle 42 #1b-1. https://orcid.org/0000-0001-8503-352X
  • ELIZABETH MURILLO Department of Chemistry, Natural Products Research Group (GIPRONUT), Science School, University of Tolima, Ibagué, Colombia, Calle 42 #1b-1. https://orcid.org/0000-0002-9991-4982

Abstract

Objective: The objective of the study was to establish potential uses of the fruit peel and seeds from Passiflora vitifolia collected in the Colombian Central Andes.


Methods: The physical characteristics and chemical profile of the byproducts were determined. The ethanolic extracts of these materials were used to assess the content and phytophenols composition, to establish the antioxidant potential and the antidiabetic activity, in vitro inhibition of α-amylase enzyme and glucose diffusion. The performance and physicochemical composition of the seed oil was also evaluated.


Results: The seeds contain almost 4 times more phenolic compounds (10 671 mg GAE/100 g sample) than the peel (2817 mg GAE/100 g sample). Likewise, crude protein and fat contents from the seeds are higher (15.5% and 25.6%) than the peel (6.60% and 5.70%, respectively). Nine phytoconstituents were positive for both extracts. Significant variation (p<0.05) of antioxidant and anti-hyperglycemic potential was observed among the peel and seeds in all methods applied.


Conclusion: Results showed that the byproducts of P. vitifolia fruit could be used to enhance the nutritional quality of functional products. These findings were also confirmed by the ethanolic extract from seeds, which revealed high levels of phenolics, high antioxidant potential, and anti-hyperglycemic activity that make it a promising phytotherapeutic product, all of which gives added value to the fruit of this wild Passiflora.

Keywords: Passiflora vitifolia, Phenolic Compounds, Antioxidant Capacity, Anti-hyperglycemic activity, Colombian Andes

References

1. Ocampo J, D’Eeckenbrugge GC, Jarvis A. Distribution of the genus Passiflora L. diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity 2010;2:1158-80.
2. Macdougal JM, Coca LF. Passiflora kumandayi (Passifloraceae), a new species from the Colombian Andes in a new section within subgenus Decaloba. Phytotaxa 2018;344:13-23.
3. Wanderley MD, Shepherd GJ, Giulietti AM, Longhi-Wagner HM, Bittrich V. Flora Fanerogâmica Do Estado de São Paulo. Vol. 1. São Paulo: Hucitec; 2001.
4. Ramírez W. Hibridación Interespecífica en Passiflora (Passifloraceae), Mediante Polinización Manual, y Características Florales Para la Polinización. Costa Rica: Lankesteriana; 2006.
5. Aguirre-Morales AC, Bonilla-Morales MM, Caetano CM. Evaluation of diversity and distribution patterns of Passiflora subgenus Astrophea (Passifloraceae) in Colombia. A challenge for taxonomic, floristic and conservation research of the species. Acta Agron 2016;65;422-30.
6. Sakalem ME, Negri, G, Tabach R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Rev Bras Farmacogn 2012;22:1219-32.
7. Rodriguez AA. Potencial Antihipertensivo y Antioxidante de Extractos Etanólicos Obtenidos de Semillas de Passiflora vitifolia Kunth y Passiflora edulis Sims var. edulis. Spanish: Universidad Nacional de Colombia-Sede Bogotá; 2018.
8. Tavhare SD, Nishteswar K. Collection practices of medicinal plants- Vedic, Ayurvedic and modern perspectives. Int J Pharm Biol Sci Arch 2014;5:54-61.
9. Duprat F, Grotte M, Loonis D, Pietri E. Etude de la possibilité de mesurer simultanément la fermeté de la chair et de l’épiderme des pommes. Sci Aliments 2000;20:253-64.
10. Horwitz W, editor. Official Methods of Analysis of AOAC International. In: Agricultural Chemicals, Contaminants, Drugs. Vol. 1. Gaithersburg, Maryland: AOAC International; 1997.
11. Patel MR. Pharmacognostic and phytochemical evaluation of Gymnema sylvestre leaf. World J Pharm Sci 2017;6:1532-8.
12. Barcelo R. Phytochemical screening and antioxidant activity of edible wild fruits in Benguet, Cordillera administrative region, Philippines. Electron J Biol 2015;11:80-9.
13. Delpino-Rius A, Eras J, Vilaró F, Cubero MÁ, Balcells M, Canela- Garayoa R. Characterisation of phenolic compounds in processed fibres from the juice industry. Food Chem 2015;172:575-84.
14. Horwitz W, Latimer GW. Official Methods of Analysis of AOAC International. 3rd ed. Gaithersburg, Maryland: AOAC International; 2010.
15. Tomàs A, Tor M, Villorbina G, Canela R, Balcells M, Eras J. A rapid and reliable direct method for quantifying meat acylglycerides with monomode microwave irradiation. J Chromatogr A 2009;1216:3290-5.
16. Dallali S, Llovera M, Joli JE, Houcine S, Canela-Garayoa R. Rapid Gas chromatographic determination of free fatty acids in rosemary (Rosmarinus officinalis L.) leaves. Anal Lett 2016;49:467-76.
17. National Institute of Standards and Technology. Automated Mass Spectral Library with Search Program (Data Version: NIST11, Version 2.0). Gaithersburg, MD, USA: National Institute of Standards and Technology; 2010.
18. Makkar HP. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Berlin, Germany: Springer Science and Business Media; 2003.
19. Braca A, Sortino C, Politi M, Morelli I, Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J Ethnopharmacol 2002;79:379-81.
20. González D, Marquina R, Rondón N, Rodríguez-Malaver AJ, Reyes R. Effects of aerobic exercise on uric acid, total antioxidant activity, oxidative stress, and nitric oxide in human saliva. Res Sports Med 2008;16:128-37.
21. Berker KI, Güçlü K, Tor ?, Apak R. Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 2007;72:1157-65.
22. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 2001;49:4619-26.
23. Keerthana G, Kalaivani MK, Sumathy A. In-vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J Pharm Clin Res 2013;6:32-6.
24. Gallagher A, Flatt P, Duffy G, Abdel-Wahab Y. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res 2003;23:413-24.
25. Negrulescu A, Patrulea V, Mincea MM, Ionascu C, Vlad-Oros BA, Ostafe V. Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. J Brazil Chem Soc 2012;23:2176-82.
26. Alexander RS, Junior KR, Chagas K, Siqueira AL, Schmildt ER, Lopes JC. Physical and chemical characterization of sweet passion fruits genotypes in Sao Mateus, Espírito Santo State, Brazil. Comun Sci 2018;9:363-71.
27. Liu S, Yang F, Li J, Zhang C, Ji H, Hong P. Physical and chemical analysis of Passiflora seeds and seed oil from China. Int J Food Sci Nutr 2008;59:706-15.
28. Rana VS, Blazquez AM. Fatty acid composition of Passiflora edulis Sims Seed oil. J Lipid Sci Technol 2008;40:65-6.
29. Regis SA, Resende ED, Antoniassi R. Oil quality of passion fruit seeds subjected to a pulp-waste purification process. Ciênc Rural 2015;45:977-84.
30. Nyanzi SA, Carstensen B, Schwack W. A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. J Am Oil Chem Soc 2005;82:41-4.
31. Normas Internacionales de los Alimentos. Codex Alimentarius. Norma Para Aceites Vegetales Especificados Codex Stan 210. Normas Internacionales de los Alimentos; 2015. p. 1-14.
32. Silva LJ, Dias DC, Oliveira GL, Júnior RA. The effect of fruit maturity on the physiological quality and conservation of Jatropha curcas seeds. Rev Ciênc Agron 2017;48:487-95.
33. Malacrida CR, Jorge N. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): Physical and chemical characteristics. Braz Arch Biol Technol 2012;55:127-34.
34. Bello MO, Akindele TL, Adeoye DO, Oladimeji A. Physicochemical properties and fatty acids profile of seed oil of Telfairia occidentalis hook, F. Int J Basic Appl Sci 2011;11:9-14.
35. Moreno E, Ortiz BL, Restrepo LP. Total phenolic content and antioxidant activity of pulp extracts of six tropical fruits. Rev Colomb Química 2014;43:41-8.
36. Rafiq M, Azeemuddin M, Anturlikar SD, Viswanatha GL, Patki PS. Application of oxygen radical absorbance capacity (ORAC) assay in the estimation of antioxidant value of botanicals. Oxid Antioxid Med Sci 2012;1:87-90.
37. Rodrigues E, Poerner N, Rockenbach II, Gonzaga LV, Mendes CR, FettR. Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci Technol 2011;31:911-7.
38. González L, Álvarez A, Murillo E, Guerra C, Méndez J. Potential uses of the peel and seed of Passiflora edulis sims f. edulis (gulupa) from its chemical characterization, antioxidant, and antihypertensive functionalities. Asian J Pharm Clin Res 2019;104-12.
39. Sudha P, Zinjarde SS, Bhargava SY, Kumar AR. Potent ?-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complemnt Altern Med 2011;11:5.
40. Meza DL, Rosas SA. Inhibitory activity of alpha-amylase and total phenols in Smallanthus sonchifolius (yacon) ethanolic leaf extracts. Rev Cuba Plant Med 2014;19:310-8.
41. Montefusco-Pereira CV, de Carvalho MJ, de Araújo Boleti AP, Teixeira LS, Matos HR, Lima ES. Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Appl Biochem Biotechnol 2013;170:1367-78.
42. Saravanan S, Parimelazhagan T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss fruit pulp. Food Sci Hum Well 2014;3:56-64.
43. Abu Soud RS, Hamdan LI, Afifi FU. Alpha amylase inhibitory activitv of some plant extracts with hypoglycemic activitv activity. Sci Pharm 2004;72:25-33.
44. Salehi B, Ata A, Kumar NV, Sharopov F, Ramírez-Alarcón K, Ruiz- Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019;9:551.
45. Barrett DM, Beaulieu JC, Shewfelt R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit Rev Food Sci Nutr 2010;50:369-89.
46. Pathare PB, Opara UL, Al-Said FAJ. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Tech 2013;6:36-60.
47. Soetan K, Olaiya C, Oyewole O. The importance of mineral elements for humans, domestic animals and plants a review. Afr J Food Sci 2010;4:200-22.
48. Jato JL. Tecnología Farmacéutica Volumen II: Formas Farmacéuticas. Madrid: Editorial Síntesis; 2001.
49. Birk CD, Provensi G, Gosmann G, Reginatto FH, Schenkel EP. TLC fingerprint of flavonoids and saponins from Passiflora species. J Liq Chromatogr Relat Technol 2005;28:2285-91.
50. Gupta RK, Kesari AN, Murthy P, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol 2005;99:75-81.
51. Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J 2015;14:59.
52. Boz H. p?Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int J Food Sci Tech 2015;50:2323-8.
53. García AÁ, Carril EP. Metabolismo secundario de plantas. Reduca (Biologia) 2009;2:119-45.
54. Ingale A, Hivrale A. Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr J Plant Sci 2010;4:417-26.
55. Ramaiya SD, Bujang JS, Zakaria MH. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. Sci World J 2014;2014:167309.
56. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of Type 2 diabetes. Molecules 2016;21:1374.
57. Moharram H, Youssef M. Methods for determining the antioxidant activity: A review. Alex J Food Sci Technol 2014;11:31-42.
58. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, et al. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Nutr J 2003;133:2812-9.
59. Mitsuhashi S, Saito A, Nakajima N, Shima H, Ubukata M. Pyrogallol structure in polyphenols is involved in apoptosis-induction on HEK293T and K562 cells. Molecules 2008;13:2998-3006.
60. Gupta D. Methods for determination of antioxidant capacity: A review. Int J Pharm Sci Res 2015;6:546.
61. Meza DL, Rosas SA. Actividad inhibitoria alfa-amilasa y fenoles totales en extractos etanólicos de hojas de Smallanthus sonchifolius (yacón). Rev Cuba Plant Med 2014;19:310-8.
62. Kim SH, Jo SH, Kwon YI, Hwang JK. Effects of onion (Allium cepa L.) extract administration on intestinal ?-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int J Mol Sci 2011;12:3757-69.
63. McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit ?-amylase and ?-glucosidase. J Agric Food Chem 2005;53:2760-6.
64. Im HJ, Yoon KY. Production and characterisation of alcohol-insoluble dietary fibre as a potential sourcefor functional carbohydrates produced by enzymatic depolymerisation of buckwheat hulls. Czech J Food Sci 2015;33:449-57.
65. MacMillan N. Utilidad del índice glicémico en nutrición deportiva. Rev Chil Nutr 2002;29:92-7.
66. Wood P, Beer M, Butler G. Evaluation of role of concentration and molecular weight of oat ?-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr 2000;84:19-23.
67. Shobana S, Sreerama Y, Malleshi N. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of ?-glucosidase and pancreatic amylase. Food chem 2009;115:1268-73.
68. Gayathri GA, Gayathri M. Preliminary qualitative phytochemical screening and in vitro hypoglycemic potential of Acanthus ilicifolius and Evolvulus emerginatus. Int J Pharm Pharm Sci 2014;6:362-5.
69. Kang BH, Racicot K, Pilkenton S, Apostolidis E. Evaluation of the in vitro anti-hyperglycemic effect of Cinnamomum cassia derived phenolic phytochemicals, via carbohydrate hydrolyzing enzyme inhibition. Plant Foods Hum Nutr 2014;69:155-60.
70. Corrêa RC, Peralta RM, Haminiuk CW, Maciel GM, Bracht A, Ferreira IC. The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci Tech 2016;58:79-95.
71. Gadioli IL, da Cunha MD, de Carvalho MV, Costa AM, Pineli LL. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit Rev Food Sci Nutr 2018;58:785-807.
72. Sujana N, Ramanathan S, Vimala V, Sundaram M, Pemaiah B. Antitumour potential of Passiflora incarnata against ehrlich ascites carcinoma. Int J Pharm Pharm Sci 2012;4:10-3.
Statistics
191 Views | 55 Downloads
Citations
How to Cite
AVILA, J., A. JIMÉNEZ, J. MÉNDEZ, and E. MURILLO. “CHEMICAL AND BIOLOGICAL POTENTIAL OF PASSIFLORA VITIFOLIA FRUIT BYPRODUCTS COLLECTED IN THE COLOMBIAN CENTRAL ANDES”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 14, no. 1, Jan. 2021, pp. 182-9, doi:10.22159/ajpcr.2021.v14i1.39277.
Section
Original Article(s)