CHEMICAL AND BIOLOGICAL POTENTIAL OF THE PASSIFLORA VITIFOLIA FRUIT BYPRODUCTS COLLECTED IN THE COLOMBIAN CENTRAL ANDES

Abstract

Passiflora vitifolia Kunth is part of a group of more than 170 species of the Passifloraceae family developed in Colombia. In this study, the potential uses of the fruit peel and seed from Passiflora vitifolia collected in the Colombian Central Andes were evaluated. The physical characteristics and chemical profile of the byproducts were determined. The ethanolic extracts of these materials were used to assess the content and phytophenols composition, to establish the antioxidant potential and the likely antidiabetic activity, via in vitro inhibition of α-amylase enzyme and glucose diffusion. The performance and physico-chemical composition of seed oil were also evaluated.  P. vitifolia seeds contain almost four times more phenolic compounds (10671 mg GAE/100g sample) than the peel (2817 mg GAE/100g sample); likewise, the seeds crude protein and fat contents are higher (15.5%, and 25.6%) than the peel (6.60% and 5.70%, respectively). Nine phytoconstituents were positive for both extracts. Significant variation (p<0.05) of antioxidant and antihyperglycemic potential was observed among the peel and seeds in all methods applied. The results showed that the byproducts of P. vitifolia fruit could be used to enhance the nutritional quality of functional products. These findings were also confirmed by the ethanolic extract from seed, which revealed high levels of phenolics, exhibited high antioxidant potential and antihyperglycemic activity that make it a promising phytotherapeutic product, all of which gives added value to the fruit of this wild Passiflora.

Keywords: Passiflora vitifolia; Phenolic Compounds; Antioxidant Capacity; Antihyperglycemic activity; Colombian Andes

References

1. Ocampo, J., Coppens D’Eeckenbrugge, G., & Jarvis, A. (2010). Distribution of the genus Passiflora L. diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2(11), 1158-1180.
2. Macdougal, J. M., & Coca, L. F. (2018). Passiflora kumandayi (Passifloraceae), a new species from the Colombian Andes in a new section within subgenus Decaloba. Phytotaxa, 344(1), 13-23.
3. Wanderley, M. d. G. L., Shepherd, G. J., Giulietti, A. M., Longhi-Wagner, H. M., & Bittrich, V. (2001). Flora fanerogâmica do estado de São Paulo (Vol. 1): Hucitec.
4. Ramírez, W. (2006). Hibridación interespecífica en Passiflora (Passifloraceae), mediante polinización manual, y características florales para la polinización. Lankesteriana.
5. Aguirre-Morales, A. C., Bonilla-Morales, M. M., & Caetano, C. M. (2016). Evaluation of diversity and distribution patterns of Passiflora subgenus Astrophea (Passifloraceae) in Colombia. A challenge for taxonomic, floristic and conservation research of the species. Acta Agronómica, 65(4), 422-430.
6. Sakalem, M. E., Negri, G., & Tabach, R. (2012). Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Revista Brasileira de Farmacognosia, 22(6), 1219-1232.
7. Jimenez Rodriguez, A. A. (2018). Potencial antihipertensivo y antioxidante de extractos etanólicos obtenidos de semillas de Passiflora vitifolia Kunth y Passiflora edulis Sims var. edulis. Universidad Nacional de Colombia-Sede Bogotá.
8.Tavhare, S. D., & Nishteswar, K. (2014). Collection practices of medicinal plants-Vedic, Ayurvedic and modern perspectives. International Journal of Pharmaceutical and Biological Archives, 5(5).
9.Duprat, F., Grotte, M., Loonis, D., & Pietri, E. (2000). Etude de la possibilité de mesurer simultanément la fermeté de la chair et de l'épiderme des pommes. Sci. Aliments, 20(2), 253-264.
10. Horwitz, W. (2010). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997.. Im, H. J., & Yoon, K. Y. (2015).
11. Patel, M. R. (2017). Pharmacognostic and Phytochemical Evaluation of Gymnema sylvestre Leaf. World J. Pharm. Pharm. Sci, 6(7), 1532-1538.
12. Barcelo, R. (2015). Phytochemical screening and antioxidant activity of edible wild fruits in Benguet, Cordillera administrative region, Philippines. Electron J Biol, 11(3), 80-9.
13.Delpino-Rius, A., Eras, J., Vilaró, F., Cubero, M. Á., Balcells, M., & Canela-Garayoa, R. (2015). Characterisation of phenolic compounds in processed fibres from the juice industry. Food chemistry, 172, 575-584.
14. Horwitz, W., & Latimer, G. W. (2010). Official methods of analysis of AOAC International. revision 3. Gaithersburg, Maryland, AOAC International.
15. Tomàs, A., Tor, M., Villorbina, G., Canela, R., Balcells, M., & Eras, J. (2009). A rapid and reliable direct method for quantifying meat acylglycerides with monomode microwave irradiation. Journal of Chromatography A, 1216(15), 3290-3295.
16. Dallali, S., Llovera, M., Eras Joli, J., Houcine, S., & Canela-Garayoa, R. (2016). Rapid Gas Chromatographic Determination of Free Fatty Acids in Rosemary (Rosmarinus officinalis L.) Leaves. Analytical Letters, 49(4), 467-476.
17. NIST., 2010. Automated mass spectral library with search program (Data version: NIST11, version2.0). National Institute of Standards and Technology, Gaithersburg, MD., USA.
18. Makkar, H. P. (2003). Quantification of tannins in tree and shrub foliage: a laboratory manual: Springer Science & Business Media.
19. Braca, A., Sortino, C., Politi, M., Morelli, I., & Mendez, J. (2002). Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of ethnopharmacology, 79(3), 379-381.
20. González, D., Marquina, R., Rondón, N., Rodríguez-Malaver, A. J., & Reyes, R. (2008). Effects of aerobic exercise on uric acid, total antioxidant activity, oxidative stress, and nitric oxide in human saliva. Research in Sports Medicine, 16(2), 128-137.
21. Berker, K. I., Güçlü, K., Tor, ?., & Apak, R. (2007). Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157-1165.
22. Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of agricultural and food chemistry, 49(10), 4619-4626.
23. Keerthana, G., Kalaivani, M. K., & Sumathy, A. (2013). In-vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J Pharm Clin Res, 6(4), 32-36..
24.Gallagher, A., Flatt, P., Duffy, G., & Abdel-Wahab, Y. (2003). The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutrition research, 23(3), 413-424.
25. Negrulescu, A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A., & Ostafe, V. (2012). Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. Journal of the Brazilian Chemical Society, 23(12), 2176-2182.
26. Alexandre, R. S., Junior, K. R. M., Chagas, K., Siqueira, A. L., Schmildt, E. R., & Lopes, J. C. (2018). Physical and chemical characterization of sweet passion fruits genotypes in Sao Mateus, Espírito Santo State, Brazil. Comunicata Scientiae, 9(3), 363-371.
27. Liu, S., Yang, F., Li, J., Zhang, C., Ji, H., & Hong, P. (2008). Physical and chemical analysis of Passiflora seeds and seed oil from China. International journal of food sciences and nutrition, 59(7-8), 706-715.
28.Rana, V. S., & Blazquez, A. M. (2008). Fatty acid composition of Passiflora edulis Sims. Seed oil. J. Lipid Sci. Technol, 40(2), 65-66.
29.Regis, S. A., Resende, E. D. D., & Antoniassi, R. (2015). Oil quality of passion fruit seeds subjected to a pulp-waste purification process. Ciência Rural, 45(6), 977-984.
30. Nyanzi, S. A., Carstensen, B., & Schwack, W. (2005). A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. Journal of the American Oil Chemists' Society, 82(1), 41-44.
31.Codex Alimentarius. (2015). Norma para aceites vegetales especificados- Codex stan 210. Normas internacionales de los alimentos, 1-14.
32. Silva, L. J. d., Dias, D. C. F. d. S., Oliveira, G. L., & Silva Júnior, R. A. d. (2017). The effect of fruit maturity on the physiological quality and conservation of Jatropha curcas seeds. Revista Ciência Agronômica, 48(3), 487-495.
33.Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55(1), 127-134.
34.Bello, M. O., Akindele, T. L., Adeoye, D. O., & Oladimeji, A. (2011). Physicochemical properties and fatty acids profile of seed oil of Telfairia occidentalis hook, F. Int. J. Basic Appl. Sci, 11(6), 9-14.
35.Moreno, E., Ortiz, B. L., & Restrepo, L. P. (2014). Total phenolic content and antioxidant activity of pulp extracts of six tropical fruits. Revista Colombiana de Química, 43(3), 41-48.
36.Rafiq, M., Azeemuddin, M., Anturlikar, S. D., Viswanatha, G. L., & Patki, P. S. (2012). Application of oxygen radical absorbance capacity (ORAC) assay in the estimation of antioxidant value of botanicals. Oxidants and Antioxidants in Medical Science, 1(2), 87-90.
37. Rodrigues, E., Poerner, N., Rockenbach, I. I., Gonzaga, L. V., Mendes, C. R., & Fett, R. (2011). Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Science and Technology, 31(4), 911-917.
38. González, L., Álvarez, A., Murillo, E., Guerra, C., & Méndez, J. (2019). Potential uses of the peel and seed of Passiflora edulis sims f. edulis (gulupa) from its chemical characterization, antioxidant, and antihypertensive functionalities. Asian Journal of Pharmaceutical and Clinical Research, 104-112.
39. Sudha, P., Zinjarde, S. S., Bhargava, S. Y., & Kumar, A. R. (2011). Potent ?-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC complementary and alternative medicine, 11(1), 5.
40. Meza, D. L. M., & Rosas, S. A. L. (2014). Inhibitory activity of alpha-amylase and total phenols in Smallanthus sonchifolius (yacon) ethanolic leaf extracts. Revista Cubana de Plantas Medicinales, 19(4), 310-318.
41. Montefusco-Pereira, C. V., de Carvalho, M. J., de Araújo Boleti, A. P., Teixeira, L. S., Matos, H. R., & Lima, E. S. (2013). Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Applied biochemistry and biotechnology, 170(6), 1367-1378.
42. Saravanan, S., & Parimelazhagan, T. (2014). In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food science and human wellness, 3(2), 56-64.
43. Abu Soud, R. S., Hamdan, L. I., & Afifi, F. U. (2004). Alpha amylase inhibitory activitv of some plant extracts with hypoglycemic activitv activity. Scientia Pharmaceutica, 72(1), 25-33.
44. Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., ... & Iriti, M. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551.
45. Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical reviews in food science and nutrition, 50(5), 369-389.
46. Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and bioprocess technology, 6(1), 36-60.
47. Soetan, K., Olaiya, C., & Oyewole, O. (2010). The importance of mineral elements for humans, domestic animals and plants-A review. African Journal of Food Science, 4(5), 200-222.
48. Vila Jato, J. L. (2001). Tecnología farmacéutica.
49. Birk, C. D., Provensi, G., Gosmann, G., Reginatto, F. H., & Schenkel, E. P. (2005). TLC fingerprint of flavonoids and saponins from Passiflora species. Journal of liquid chromatography & related technologies, 28(14), 2285-2291.
50.Gupta, R. K., Kesari, A. N., Murthy, P., Chandra, R., Tandon, V., & Watal, G. (2005). Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. Journal of ethnopharmacology, 99(1), 75-81.
51. Al-Dhabi, N. A., Arasu, M. V., Park, C. H., & Park, S. U. (2015). An up-to-date review of rutin and its biological and pharmacological activities. EXCLI journal, 14, 59.
52. Boz, H. (2015). p?Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. International journal of food science & technology, 50(11), 2323-2328.
53.García, A. Á., & Carril, E. P. U. (2011). Metabolismo secundario de plantas. Reduca (biologia), 2(3).
54. Ingale, A., & Hivrale, A. (2010). Pharmacological studies of Passiflora sp. and their bioactive compounds. African Journal of Plant Science, 4(10), 417-426.
55. Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. The Scientific World Journal, 2014.
56. Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., . . . Liu, Y. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), 1374.
57. Moharram, H., & Youssef, M. (2014). Methods for determining the antioxidant activity: a review. Alex. J. Fd. Sci. & Technol, 11(1), 31-42.
58. Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of nutrition, 133(9), 2812-2819.
59. Mitsuhashi, S., Saito, A., Nakajima, N., Shima, H., & Ubukata, M. (2008). Pyrogallol structure in polyphenols is involved in apoptosis-induction on HEK293T and K562 cells. Molecules, 13(12), 2998-3006.
60.Gupta, D. (2015). Methods for determination of antioxidant capacity: a review. International Journal of Pharmaceutical Sciences and Research, 6(2), 546.
61.Meza, D. L. M., & Rosas, S. A. L. (2014). Actividad inhibitoria alfa-amilasa y fenoles totales en extractos etanólicos de hojas de Smallanthus sonchifolius (yacón). Revista Cubana de Plantas Medicinales, 19(4), 310-318.
62. Kim, S.-H., Jo, S.-H., Kwon, Y.-I., & Hwang, J.-K. (2011). Effects of onion (Allium cepa L.) extract administration on intestinal ?-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. International journal of molecular sciences, 12(6), 3757-3769.
63. McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit ?-amylase and ?-glucosidase. Journal of agricultural and food chemistry, 53(7), 2760-2766.)
64. Im, H. J., & Yoon, K. Y. (2015). Production and characterisation of alcohol-insoluble dietary fibre as a potential sourcefor functional carbohydrates produced by enzymatic depolymerisation of buckwheat hulls. Czech Journal of Food Sciences, 33(5), 449-457.
65. MacMillan, N. (2002). Utilidad del índice glicémico en nutrición deportiva. Revista chilena de nutrición, 29(2), 92-97.
66. Wood, P., Beer, M., & Butler, G. (2000). Evaluation of role of concentration and molecular weight of oat ?-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. British Journal of Nutrition, 84(1), 19-23.
67. Shobana, S., Sreerama, Y., & Malleshi, N. (2009). Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of ?-glucosidase and pancreatic amylase. Food chemistry, 115(4), 1268-1273.
68. Kang, B.-H., Racicot, K., Pilkenton, S., & Apostolidis, E. (2014). Evaluation of the in vitro anti-hyperglycemic effect of Cinnamomum cassia derived phenolic phytochemicals, via carbohydrate hydrolyzing enzyme inhibition. Plant foods for human nutrition, 69(2), 155-160.
69. Corrêa, R. C., Peralta, R. M., Haminiuk, C. W., Maciel, G. M., Bracht, A., & Ferreira, I. C. (2016). The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp.(passion fruit). Trends in Food Science & Technology, 58, 79-95.
70. Gadioli, I. L., da Cunha, M. d. S. B., de Carvalho, M. V. O., Costa, A. M., & Pineli, L. d. L. d. O. (2018). A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Critical reviews in food science and nutrition, 58(5), 785-807.
Statistics
109 Views | 26 Downloads
How to Cite
Avila, J., A. Jimenez, J. Mendez, and E. Murillo. “CHEMICAL AND BIOLOGICAL POTENTIAL OF THE PASSIFLORA VITIFOLIA FRUIT BYPRODUCTS COLLECTED IN THE COLOMBIAN CENTRAL ANDES ”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 14, no. 1, Jan. 2021, pp. 182-9, https://innovareacademics.in/journals/index.php/ajpcr/article/view/39277.
Section
Original Article(s)