• AIRLLA LAANA DE MEDEIROS CAVALCANTI Biotechnology Center, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • PATRÍCIA KEYTTH LINS ROCHA Biotechnology Center, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • ISADORA SILVA LUNA Biotechnology Center, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • MARIA CLÁUDIA RODRIGUES BRANDÃO Department of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • EMMELY OLIVEIRA DA TRINDADE Department of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • GEOVANI PEREIRA GUIMARÃES Department of , Research Institute in Drug and Medicines, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • PETRÔNIO FILGUEIRAS ATHAYDE-FILHO Department of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • EUGENE MURATOV Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America.
  • BARKAT KHAN Department of , Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan.
  • MARCUS TULLIUS SCOTTI Biotechnology Center, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.
  • VALDIR DE ANDRADE BRAGA Biotechnology Center, Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil.


Objective: This study aimed to describe the synthesis and biological/pharmacokinetic potential of the 1,3-diisobutoxypropan-2-yl nitrate (NDIBP) using in silico and ex vivo approaches.

Methods: The compound was characterized by Fourier-transform infrared spectroscopy and 1H and 13C- nuclear magnetic resonance spectra. NDIBP biological activity spectrum was obtained by Prediction of Activity Spectra for Substances (PASS). The pharmacological effect was validated in ex vivo studies using mesenteric artery. Drug-like properties and Absorption Distribution Metabolism Excretion and Toxicity (ADMET) studies were carried out by pkCSM (Predicting Small-Molecule Pharmacokinetic Properties Using Graph-Based Signatures) software.

Results: PASS prediction indicated NDIBP as nitric oxide (NO) donor with vasodilator effect. Ex vivo studies validated PASS analysis and showed the NDIBP vasorelaxant activity in mesenteric arteries. Physicochemical parameters and ADMET prediction suggested that NDIBP is a drug-like molecule with a good theoretical oral bioavailability, good absorption in the gastrointestinal tract, and a low distribution in the tissues.

Conclusion: All the data indicated that NDIBP possesses biological activities and drug-like properties to be considered as a vasorelaxant agent and a good candidate for further investigation in the treatment of arterial hypertension and drug development studies.

Keywords: Organic nitrate, Prediction of Activity Spectra for Substances, ADME, Hypertension, Mesenteric artery


1. Egan BM, Kjeldsen SE, Grassi G, Esler M, Mancia G. The global burden of hypertension exceeds 1.4 billion people: Should a systolic blood pressure target below 130 become the universal standard? J Hypertens 2019;37:1148-53.
2. Balarini CM, Cruz JC, Alves JL, França-Silva MS, Braga VA. Developing New Organic Nitrates for Treating Hypertension. Cambridge, Massachusetts: Academic Press; 2017. p. 243-262.
3. Pinheiro LC, Tanus-Santos JE, Castro MM. The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets 2017;21:543-56.
4. Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, et al. Endothelial dysfunction in conduit arteries and in microcirculation: Novel therapeutic approaches. Pharmacol Ther 2014;144:253-67.
5. Veerasamy M, Bagnall A, Neely D, Allen J, Sinclair H, Kunadian V. Endothelial dysfunction and coronary artery disease: A state of the art review. Cardiol Rev 2015;23:119-29.
6. Kang N, Lee JH, Lee WW, Ko JY, Kim EA, Kim JS, et al. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol 2015;39:764-72.
7. Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 2012;33:829a-37d.
8. Münzel T, Daiber A, Gori T. Nitrate therapy: New aspects concerning molecular action and tolerance. Circulation 2011;123:2132-44.
9. Katsumi H, Nishikawa M, Hashida M. Development of nitric oxide donors for the treatment of cardiovascular diseases. Cardiovasc Hematol Agents Med Chem 2007;5:204-8.
10. Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology 2012;122:55-68.
11. Yeo TW, Lampah DA, Gitawati R, Tjitra E, Ke-Nangalem E, Mcneil YR, et al. Impaired nitric oxide bioavailability and l-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 2007;204:2693-704.
12. França-Silva MS, Luciano MN, Ribeiro TP, Silva JS, Santos AF, França KC, et al. The 2-nitrate-1,3-dibuthoxypropan, a new nitric oxide donor, induces vasorelaxation in mesenteric arteries of the rat. Eur J Pharmacol 2012;690:170-5.
13. Münzel T, Daiber A, Mülsch A. Explaining the phenomenon of nitrate tolerance. Circ Res 2005;97:618-28.
14. Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide 2012;26:229-40.
15. Klemenska E, Ber?sewicz A. Bioactivation of organic nitrates and the mechanism of nitrate tolerance. Cardiol J 2009;16:11-9.
16. Poroikov VV, Filimonov DA, Ihlenfeldt W, Gloriozova TA, Lagunin AA, Borodina Y, et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 2003;43:228-36.
17. Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova T, et al. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 2018;13:e0191838.
18. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000;16:747-8.
19. Saffari-Chaleshtori J, Heidari-Soreshjani E, Asadi-Samani M. Computational study of quercetin effect on pre-apoptotic factors of Bad, Bak and Bim. J Herbmed Pharmacol 2016;2:61-6.
20. Chinnasamy P, Arumugam R. In silico prediction of anticarcinogenic bioactives traditional anti-inflammatory plants used by tribal healers in Sathyamangalam wildlife Sactuary, India. Egypt J Basic Appl Sci 2018;5:265-79.
21. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2012;2:44-55.
22. Aniyery RB, Gupta A, Singh P, Khatri C, Pathak A. Synthesis, characterization, biological activities and computational anticancer study of dibutylbis [(2-isopropyl-5-ethylcyclohexyl) oxy] stannane. J Chem Pharm Sci 2015;8:957-63.
23. Salgueiro AC, Folmer V, Rosa HS, Costa MT, Boligon AA, Paula FR, et al. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. J Ethnopharmacol 2016;194:6-14.
24. ECHA-European Chemicals Agency. Non-animal Approaches Current Status of Regulatory Applicability under the REACH, CLP and Biocidal Products Regulations. Available from: https://www. [Last accessed on 2020 April 05].
25. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015;58:4066-72.
26. Sasikala RP, Meena KS. Identification of biological activities of Abutilon indicum fruit by in silico and in vitro approach. Karbala Int J Mod Sci 2018;4:287-96.
27. Fatima S, Gupta P, Sharma A, Agarwal SM. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med Chem 2020;12:69-87.
28. Fisher J. Organic Nitro Series, Recent Advanced in Synthesis and Chemistry. New York: VCH; 1990.
29. Olah GA, Ripudaman M, Narang, SC. Nitration, Methods and Mechanism: Across Conventional Lines. New York: VCH; 1989. p. 975-9.
30. Parasuraman S. Prediction of activity spectra for substances. J Pharmacol Pharmacother 2011;2:52-3.
31. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin P, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Comp 2014;50:444-57.
32. Kurashov EA, Fedorova EV, Krylova JV, Mitrukova GG. Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR. Scientifica 2016;2016:1-9.
33. Jamkhande PG, Wattamwar AS, Pekamwar SS, Chandaw PG. Antioxidant, antimicrobial activity and in silico PASS prediction of Annona reticulata Linn. Root extract. Beni-Suef Univ J Basic Appl Sci 2014;3:140-8.
34. Anand A, Sharma N, Khurana N. Prediction of activity spectra of substances assisted prediction of biological activity spectra of potential anti-Alzheimer’s phytoconstituents. Asian J Pharm Clin Res 2017;10:13-21.
35. Zykova SS, Igidov NM, ?iselev MA, Boichuk SV, Galembikova AR, Zagulova DV. Experimental Study on the Development of Anticancer Agents Based on Pyrrole Containing Heterocycles. Vol. 18. Health and Education in the 21st Century 2016. p. 121-7.
36. Pogodin PV, Lagunin AA, Rudik AV, Filimonov DA, Druzhilovskiy DS, Nicklaus MC, et al. How to achieve better results using PASS-based virtual screening: Case study for kinase inhibitors. Front Chem 2018;6:1-14.
37. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA. PASS-assisted design, synthesis and antioxidant evaluation of new butylated hydroxytoluene derivatives. Eur J Med Chem 2014;87:564-77.
38. Filimonov D, Poroikov V, Borodina Y, Gloriozova, T. Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other descriptors. J Chem Inf Comput Sci 1999;39:666-70.
39. Stepanchikova AV, Lagunin AA, Filimonov DA, Poroikov VV. Prediction of biological activity spectra for substances: Evaluation on the diverse sets of drug-like structures. Curr Med Chem 2003;10:225-33.
40. Filimonov DA, Poroikov VV. Prediction of biological activity spectra for organic compounds. Russ Chem J 2006;2:66.
41. Filimonov DA, Poroikov VV. Probabilistic approaches in activity prediction. In: Varnek A, Tropsha A, editor. Chemoinformatics Approaches to Virtual Screening. Cambridge: RSC Publishing; 2008. p. 182-216.
42. Goel RK, Lagunin A, Singh D, Poroikov V. PASS-Assisted exploration of new therapeutic potential of natural products. Med Chem Res 2011;20:1509-14.
43. Khurana N, Ishar MP, Gajbhiye A, Goel RK. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur J Pharmacol 2011;662:22-30.
44. Munhoz FC, Potje SR, Pereira AC, Daruge MG, Silva RS, Bendhack LM, et al. Hypotensive and vasorelaxing effects of the new NO-donor [Ru(terpy)(bdq)NO+]3+ in spontaneously hypertensive rats. Nitric Oxide 2012;26:111-7.
45. Mendes-Júnior LG, Guimarães DD, Gadelha DD, Diniz TF, Brandão MC, Athayde-Filho PF, et al. The new nitric oxide donor cyclo-hexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway. Front Physiol 2015;31:243.
46. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3-25.
47. Han Y, Zhangb J, Hu C. A systematic toxicity evaluation of cephalosporins via transcriptomics in zebrafish and in silico ADMET studies. Food Chem Toxicol 2018;116:264-71.
48. Shen J, Zhao Y, Chen G, Yuan Q. Investigation of nitration process of iso-octanol with mixed acid in a microreactor. Chin J Chem Eng 2009;17:412-8.
49. Suppes GJ, Dasari AM. Synthesis and evaluation of alkyl nitrates from triglycerides as cetane improvers. Ind Eng Chem Res 2003;42:5042-53.
50. Zhuge Z, Paulo LL, Jahandideh A, Brandão MC, Athayde-Filho PR, Lundberg JO, et al. Synthesis and characterization of a novel organic nitrate NDHP: Role of xanthine oxidoreductase-mediated nitric oxide formation. Redox Biol 2017;13:163-9.
51. Porpino SK, Travassos RA, Gadelha DD, Balarini CM, Cruz JC, Santos AF, et al. Developing new organic nitrates for treating hypertension: A review. J Hypertens 2016;5:232.
52. Paulo LL, Cruz JC, Zhuge Z, Carvalho-Galvão A, Brandão MC, Diniz TF, et al. The novel organic mononitrate NDHP attenuates hypertension and endothelial dysfunction in hypertensive rats. Redox Biol 2018;15:182-91.
53. Daiber A, Münzel T. Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: Emphasis on redox biology and oxidative stress. Antioxid Redox Sign 2015;23:899-942.
54. Divakaran S, Loscalzo J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J Am Coll Cardiol 2017;70:2393-410.
55. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, et al. Moderate regular exercise increases basal production of nitric oxide in elderely women. Hypertension Res 2004;27:947-53.
56. Shapoval LN. Nitric oxide: Involvement in the nervous control of cardiovascular function. Neurophysiol 2004;36:466-78.
57. Bonaventura D, Lima RG, Vercesi JA, Silva RS, Bendhack LM. Comparison of the mechanisms underlying the relaxation induced by two nitric oxide donors: Sodium nitroprusside and a new ruthenium complex. Vascul Pharmacol 2007;46:215-22.
58. Mayer B, Beretta M. The enigma of nitroglycerin bioactivation and nitrate tolerance: News, views and troubles. Br J Pharmacol 2008;155:170-84.
59. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015;129:83-94.
60. Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, et al. The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed 2013;52:9442-62.
61. Mitchell JA, Ali F, Bailey F, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 2008;93:141-7.
62. Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: Benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012;165:1288-305.
63. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 2003a;22:469-78.
64. Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Cir Res 2003b;93:280-91.
65. Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D. Direct activation of PDE5 by cGMP: Long-term effects within NO/ cGMP signaling. J Cell Biol 2003;160:719-27.
66. Mullershausen F, Russwurm M, Koesling D, Friebe A. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: Role of phosphodiesterase Type 5 phosphorylation. Mol Biol Cell 2004;15:4023-30.
67. Touyz RM. Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 2003;12:165-74.
68. Kim D, Aizawab T, Weic H, Pic X, Rybalkind SD, Berkc BC, et al. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling. J Mol Cell Cardiol 2005;38:175-84.
69. Palit V, Eardley I. An update on new oral PDE5 inhibitors for the treatment of erectile dysfunction. Nat Rev Urol 2010;7:603-9.
70. Balarini CM, Leal MA, Gomes IB, Pereira TM, Gava AL, Meyrelles SS, et al. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse. J Transl Med 2013;11:3.
71. Cavalcanti CO, Alves RR, Oliveira AL, Cruz JC, França-Silva MS, Braga VA, et al. Inhibition of PDE5 restores depressed baroreflex sensitivity in renovascular hypertensive rats. Front Physiol 2016;7:1-9.
72. Dias AT, Cintra A, Frossard JC, Palomino Z, Casarini DE, Gomes IB, et al. Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J Transl Med 2014;12:250.
73. Thieme M, Sivritas SH, Mergia E, Potthoff SA, Yang G, Hering L, et al. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. Am J Physiol-Renal 2017;312:474-81.
74. Ghiadoni L, Versari D, Taddei S. Phosphodiesterase 5 inhibition in essential hypertension. Cur Hypert Rep 2008;10:52-7.
75. Chistiakov DA, Orekhov AN, Bobryshev YV. ApoA1 and ApoA1- specific self-antibodies in cardiovascular disease. Lab Investig 2016;96:708-18.
76. Carnicer R, Navarro MA, Arbonés-Mainar JM, Arnal C, Surra JC, Acín S, et al. Genetically based hypertension generated through interaction of mild hypoalphalipoproteinemia and mild hyperhomocysteinemia. J Hypertens 2007;25:8.
77. Gordon DJ, Rifkind BM. High-density lipoprotein the clinical implications of recent studies. N Engl J Med 1989;321:1311-6.
78. Nayak P, Panda S, Thatoi PK, Rattan R, Mohapatra S, Mishra PK. Evaluation of lipid profile and apolipoproteins in essential hypertensive patients. J Clin Diagn Res 2016;10:1-4.
79. National Center for Biotechnology Information. PubChem Data-base. Nitroglycerin CID=4510; 2020.
80. National Center for Biotechnology Information. PubChem Data-base. Isosorbide Mononitrate CID=27661; 2020.
81. National Center for Biotechnology Information. PubChem Data-base. Isosorbide Dinitrate CID=6883; 2020.
82. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23.
83. Veselinovi? JB, Koci? GM, Pavic A, Nikodinovic-Runic J, Senerovic L, Nikoli? GM et al. Selected 4-phenyl hydroxycoumarins: In vitro cytotoxicity, teratogenic effect on zebrafish (Danio rerio) embryos and molecular docking study. Chem Biol Interact 2015;231:10.
84. Stenberg P, Norinder U, Luthman K, Artursson P. Experimental and computational screening models for the prediction of intestinal drug absorption. J Med Chem 2001;44:1927-37.
85. Van der Waterbeemd H, Kansy M. Hydrogen-bonding capacity and brain penetration. CHIMIA 1992;46:299-303.
86. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 2000;43:3714-7.
87. Navia MA, Chaturvedi PR. Design principles for orally bioavailable drugs. Drug Discov Today 1996;1:179-89.
88. Ferreira SB, Dantas TB, Silva DF, Ferreira PB, Melo TR, Lima EO. In silico and in vitro investigation of the antifungal activity of isoeugenol against Penicillium citrinum. Curr Top Med Chem 2018;18:2186-96.
89. Wils P, Warnery A, Phung-Ba V, Legrain S, Scherman D. High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther 1994;269:654-8.
90. Khanna V, Ranganathan S. Physicochemical property space distribution among human metabolites, drugs and toxins. BMC Bioinformat 2009;10:1-18.
91. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26.
92. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012;64:4-17.
93. Shearer TW, Smith KS, Diaz D, Asher C, Ramirez J. The role of in vitro ADME assays in antimalarial drug discovery and development. Comb Chem High Throughput Screen 2005;8:89-98.
94. Merlot C. Computational toxicology a tool for early safety evaluation. Drug Discov Today 2010;15:16-22.
95. Algahtani S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin Drug Metab Toxicol 2017;13:1147-58.
96. Ghosh J, Lawless MS, Waldman M, Gombar V, Fraczkiewicz R. Modeling ADMET In silico methods for predicting drug toxicity. Methods Mol Biol 2016;63-83.
97. Nisha CM, Kumar A, Vimal A, Bai BM, Pal D, Kumar A. Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as potential inhibitor. J Mol Graph Model 2016;65:100-7.
98. Horie K, Tang F, Borchardt RT. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res 2003;20:161-7.
99. Hodgson J. ADMET-Turning chemicals into drugs. Nat Biotechnol 2001;19:722-6.
100. Widiyarti G, Sundowo A, Megawati M, Ernawati T. Synthesis, characterization, anticancer and in silico ADME properties of caproic acid derivatives against P388 cancer cell lines. Indones J Pharm 2019;1:1-8.
101. Stenberg P, Bergström CA, Luthman K, Artursson P. Theoretical predictions of drug absorption in drug discovery and development. Clin Pharmacokinet 2002;41:877-99.
102. Hunter J, Hirst BH. Intestinal secretion of drugs: The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev 1997;25:129-57.
103. Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur J Pharm Sci 2000;12:3-12.
104. Taipalensuu J, Törnblom H, Lindberg G, Einarsson C, Sjöqvist F, Melhus H, et al. Correlation of gene expression of ten drug efflux proteins of the ATP binding cassette family in normal human jejunum and in human intestinal epithelial Caco-2 cell monobyers. J Pharmacol Exp Ther 2001;299:164-70.
105. Pires DE, Kaminskas LM, Ascher DB. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Methods Mol Biol 2018;1762:271-84.
106. Lin J, Sahakian DC, Morais SM, Xu JJ, Polzer RJ. Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem 2003;3:1125-54.
107. Honório KM, Moda TL, Andricopulo AD. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem 2013;9:163-76.
108. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 2001;6:357-66.
109. Silvino AC, Costa GL, Araujo FC, Ascher DB, Pires DE, Fontes CJ, et al. Variation in human cytochrome P-450 drug-metabolism genes: A gateway to the understanding of Plasmodium vivax relapses. PLoS One 2016;11:1-14.
110. Ekowati J, Diyah NW, Nofianti KA, Hamid IS, Sis-wodihardjo S. Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. J Math Fundam Sci 2018;50:203-19.
111. Shehzadi N, Hussain K, Islam M, Bukhari N, Khan MT, Salman M, et al. In silico drug-qualifying parameters of 5-[(4-chlorophenoxy) methyl]-1,3,4-oxadiazole-2-thiol. Lat Am J Pharm 2016;35:1991-7.
112. Boguslavsky J. Minimizing risk in “hits to leads”. Drug Discov Dev 2001;4:26-30.
113. Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, et al. In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 2012;52:2840-7.
114. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995;81:299-307.
115. Wang S, Li Y, Xu L, Li D, Hou T. Recent developments in computational prediction of hERG blockage. Curr Top Med Chem 2013;13:1317-26.
116. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 1998;74:230-41.
117. Li F, Wang H, Wang Y, Feng S, Hu B, Zhang X, et al. Computational investigation reveals Picrasidine C as selective PPAR? lead: Binding pattern, selectivity mechanism and ADME/tox profile. J Biomol Struct Dyn 2019;12:1-18.
118. Bissell DM, Gores GJ, Laskin DL, Hoofnagle JH. Drug-Induced liver injury: Mechanisms and test systems. Hepatology 2001;33:1009-13.
119. Gomez-Lechon MJ, Lahoz A, Gombau L, Castell JV, Donato MT. In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 2010;16:1963-77.
120. Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: Interactions between drug properties and host factors. J Hepatol 2015;63:503-14.
22 Views | 14 Downloads
How to Cite
Original Article(s)