IN VITRO AND IN VIVO ANTIFUNGAL ACTIVITY OF ALKALOID 3,5-bis(4,4’’-dimethoxy- [1,1’:2’,1’’-terphenyl]-4’-yl)-4H-pyrazole-4,4-diol FROM DERRIS INDICA (LAM) BENNETT SEEDS


  • NUZHAT TABASSUM Department of Post-Graduate Studies and Research in Botany, Medicinal Plants and Microbiology Research Laboratory, Gulbarga University, Kalaburagi, Karnataka, India.
  • VIDYASAGAR G. M. Department of Post-Graduate Studies and Research in Botany, Medicinal Plants and Microbiology Research Laboratory, Gulbarga University, Kalaburagi, Karnataka, India.
  • RAGHUNANDAN D Department of Pharmaceutical and Nano Chemistry, Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Kalaburagi, Karnataka,
  • SHIVAKUMAR I Department of Pharmaceutical and Nano Chemistry, Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Kalaburagi, Karnataka, India.



Derris indica, Seed oil, Alkaloid compound, In vitro, In vivo studies


Objectives: The aim of the present study is to isolate an antifungal compound from Derris indica (Lam) Bennett seed oil with various solvents and evaluation of its antifungal activity against the clinical species of Candida.

Methods: D. indica seed hexane extract was tested against Trichophyton rubrum, Trichophyton tonsurans and Candida albicans. Hexane extract was fractioned using different solvents through column chromatography (CC). Isolated compound D1 was identified and characterized using ultraviolet, Fourier-transform infrared, 1HNMR, and mass spectroscopy. In vitro evaluation of D1 carried out against 12 Candida strains. In vivo evaluation of D1 carried out against T. rubrum, T. tonsurans, and C. albicans using an excision wound healing model on male Wistar rats.

Results: Different concentrations of hexane extract showed antimicrobial activity against tested microorganism with varying minimum inhibitory concentration values. On fractionation with hexane-petroleum ether through CC, it yielded a crystalline fraction. Compound D1 characterized as a 3,5-bis (4,4’’-dimethoxy-[1,1’: 2’,1’’-terphenyl]-4’-yl)-4H-pyrazole-4,4-diol. A novel alkaloid compound from D. indica is a new report and proved to be inhibitory against C. albicans MTCC 3017 (14.83±0.28), MTCC 1637 (16.0±0.0), Candida glabrata MTCC 3814 (16.83±0.28) and MTCC 3014 (16.66±0.57), Candida tropicalis MTCC 230 (20.0±0.0), MTCC 1406 (12.33±0.57). C. glabrata MTCC 3981 was found to be resistant to the compound. In vivo studies showed no visual symptoms at the end of treatment indicating the therapeutic property of the compound.

Conclusion: The D1 was found to be effective against human fungal pathogens and can be used as a base molecule in designing new antifungal drugs.


Download data is not yet available.


Savita S, Rao DV, Sharma RA. A review on Pongamia pinnata (L.) Pierre: A great versatile leguminous plant. Nat Sci 2010;8:130-9.

Chopade VV, Tankar AN, Pande VV, Tekade AR, Gowekar NM, Bhandari SR, Khandake SN. Pongamia pinnata: Phytochemical constituents, traditional uses and pharmacological properties: A review. Int J Green Pharm 2008;2:72-5.

Pankaj K, Rakesh P. An Phytochemical overview of various parts of Pongamia pinnata (Karanj). World J Pharm Res 2012;2:146-65.

Koysomboon S, Altena IV, Kato S, Chantrapromma K. Antimycobacterial flavonoids from Derris indica. Phytochemistry 2006;67:1034-40.

Li LY, Li X, Shi C, Deng ZW, Fu HZ, Proksch P, et al. Pongamone A-E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochem 2006;67:1347-52.

Yin H, Wu J, Nan H, Zhang S. New prenylated flavones from Pongamia pinnata. Pharmazie 2006;61:76-8.

Ahmad G, Yadav PP, Maurya R. Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 2004;65:921-4.

Yadav PP, Ahmad G, Maurya R. Furanoflavonolds from Pongamia pinnata fruits. Phytochemistry 2004;65:439-43.

Carcache-Blanco EJ, Kang YH, Park EJ, Su BN, Kardono LB, Riswan S, et al. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase. J Nat Prod 2003;66:1197-202.

Simin K, Ali Z, Khaliq-Uz-Zaman SM, Ahmad VU. Structure and biological activity of a new rotenoid from Pongamia pinnata. Nat Prod Lett 2002;16:351-7.

Chauhan D, Chauhan JS. Flavonoid glycosides from Pongamia pinnata. Pharm Biol 2002;40:171-4.

Tanaka T, Iinuma M, Yuki K, Fujii Y, Mizuno M. Flavonoids in root bark of Pongamia pinnata. Phytochemistry 1992;31:993-8.

Tanaka T, Iinuma M, Yuki K, Fujii Y, Mizuno M. Two new beta-hydroxychalcones from the root bark of Pongamia pinnata. Chem Pharm Bull 1991;39:1473-5.

Kanungo PD, Ganguly A, Guha A, Bhattacharyya A, Adityachaudhury N. Glabone, a new furanoflavone from Pongamia glabra. Phytochemistry 1987;26:3373-4.

Pathak VP, Saini TR, Khanna RN. Isopongachromene, a chromenoflavone from pongamia glabra seeds. Phytochemistry 1983;22:308-9.

Talapatra SK, Mallik AK, Talapatra B. Isopongaglabol and 6-methoxyisopongaglabol, two new hydroxyfuranoflavones from Pongamia glabra. Phytochemistry 1982;21:761-6.

Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plant. New Delhi, India: Central Drug Research Institute and Publication and Information Directorate; 1993.

Talapatra SK, Mallik AK, Talapatra B. Pongaglabol, a new hydroxyfuranoflavone, and aurantiamide acetate, a dipeptide from the flowers of Pongamia glabra. Phytochemistry 1980;19:1199-202.

Ujwal P, Pramod KM, Raja NH, Hosetti BB. Antimicrobial activity of different extracts of Pongamia pinnata. Med Aromat Plant Sci Biotechnol 2007;1:285-7.

Davies J. Inactivation of antibiotic and the dissemination of resistance genes. Science 1994;264:375-82.

Hay RJ. Antifungal drugs used for systemic mycoses. Dermatol Clin 2003;21:577-87.

Marques SA, Robles AM, Tortorano AM, Tuculet MA, Negroni R, Mendes RP. Mycoses associated with AIDS in the Third World. Med Mycol 2000;38:269-79.

Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 1998;29:489-96.

Harami MA, Abayeh OJ, Ibok NN, Samual EK. Antifungal activity of extracts of some Cassia, Detarium, and Ziziphus species against dermatophytes. Nat Prod Rad 2006;5:357-60.

Mandal SM, Barbosa AE, Franco OL. Lipopeptides in microbial infection control: Scope and reality for industry. Biotechnol Adv 2013;31:338-45.

Kiruba S, Mahesh M, Nisha SR, Miller PZ, Jeeva S. Phytochemical analysis of the flower extracts of Rhododendron arboreum Sm. ssp. nilagiricum (Zenker) Tagg. Asian Pac J Trop Biomed 2011;1:278-80.

Rao RR, Tiwari AK, Reddy PP, Babu KS, Ali AZ, Madhusudana K, et al. New furanoflavanoids, intestinal α-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.). Bioorg Med Chem 2009;17:5170-5.

Simin S, Usman GK, Shaiq AM, Viqaruddin A. Chemical constituent from the seeds of Pongamia pinnata (L) Pierre. Pak J Pharm Sci 1996;9:11-20.

Ahmad G, Yadav PP, Maurya R. Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 2004;65:921-4.

Naghmana R, Muhammad SA, Muhammad KT, Nurdiyana MY, Bohari MY. Isolation and crystal structure of karanjachromene. Anal Sci 2008;24:21-2.

Pathak VP, Saini TR, Khanna RN. Isopongachromene, a chromenoflavone from Pongamia glabra seeds. Phytochemistry 1983;22:308-9.

Rangaswami S, Seshadri TR. Pongamol, a New Crystalline Compound from Pongamia Oil. Letters to Editors. Current Science; 1940. p. 179.

Suresh KP, Sucheta S, Deepa S, Selvamani P, Latha S. Antioxidant activity in some selected medicinal plants. Afr J Biotechnol 2008;7:1826-8.

Seetharam YN, Kotresh K, Uplokar SB. Flora of Gulbarga District. Gulbarga: Gulbarga University; 2000.

Saldanha CJ. Flora of Karnataka. Vol. 1, 2. New Delhi: Oxford and IBH; 1984a.

Gamble JS. Flora of Presidency of Madras. Vol. 1, 2, 3. London: Adlord and Son Ltd.; 1935.

Gibbs RD. Chemotaxonomy of Flowering Plants. Vol. 11. London: McGill-Queen’s University Press; 1974. p. 1236-8.

Peach K, Tracey MV. Modern Method of Plant Analysis. Vol. 3. New Delhi: Narosa Publishing House; 1959. p. 64.

Dey PM, Harborne JB. Methods in Plant Biochemistry. London: Academic Press; 1989. p. 552.

Trease GE, Evans WC. Pharmacognsy. 11th ed. London: Brailliar Tiridel Can Macmillian Publishers; 1989.

Stahl E. Thin-Layer Chromatography, a Laboratory Handbook. 2nd ed. Berlin, Heidelberg: Springer; 1969.

Magaldi S, Mata-Essayag S, de Capriles CH, Perez C, Colella MT, Carolina O, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis 2004;8:39-45.

Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavanula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J Agri Food Chem 1998;46:1739-45.

Marina S, Glamoclija J, Ciric A, Kataranovski D, Marin PD, Vukojevic J, et al. Antifungal activity of the essential oils and components in vitro and in vivo on experimentally induced dermatomycoses at rats. Dig J Nanomater Biostruct 2012;7:959-66.

Hutchings A, Scott AH, Lewis G, Cunningham A. Zulu Medicinal Plants: An Inventory. Scottsville, Pietermaritzburg: University of Natal Press; 1996. p. 195-6.

Karamanoli K. Secondary metabolites as allelochemicals in plant defence against microorganisms of the phyllosphere. In: Reigosa M, Pedrol N, editors. Allelopathy from Molecules to Ecosystems. United States: Science Publishers Inc.; 2002. p. 277-88.

Khan MR, Omoloso AD, Barewai Y. Antimicrobial activity of the Derris elliptica, Derris indica and Derris trifoliata extractives. Fitoterapia 2006;77:327-30.

Wagh P, Rai M, Deshmukh SK, Durate MC. Bio-activity of oils of Trigonella foenum-graecum and Pongamia pinnata. Afr J Biotechnol 2007;6:1592-6.

Baki AM, Khan A, Bari MA, Mosaddik A, Sadik G, Mondal KA. Sub-acute toxicological studies of pongamol isolated from Pongamia pinnata. J Med Med Sci 2007;2:53-7.

Vandana M, Sharad V, Megha J, Jaya B, Raka K. Antimicrobial activity of bioactive metabolites isolated from selected medicinal plants. Asian J Exp Sci 2007;21:1-6.

Nuzhat T, Vidyasagar GM. Ethnomedicinal oil plants used in treating skin diseases in hyderabad Karnataka Region, Karnataka, India. Int J Chem Tech Res 2017;10:770-84.

Nuzhat T, Vidyasagar GM. Phytochemical analysis and antifungal activity of some medicinal oil plants against human pathogens causing skin infections. Int J Chem Tech Res 2017;10:171-7.

Suryakant B, Kedarnath, Vishwanath C, Patil CS. Phytochemical screening and characterization of Pongamia pinnata (L) seed oil. Int J Pharm Anal 2011;3:17-20.

Mohamed FR, Khaled MM, Hefnawy TM, Kinni SG, Rajanna LN, Seetharam YN, et al. Chromatographic analysis for fatty acids and lipid soluble bio actives of Derris indica crude seed oil. Chromatographia 2009;70:103-8.

Mahmud S, Iqbal Z. Phytochemical investigation of seeds of Pongamia pinnata. Pak J Sci 2009;61:6-9.

Khanna RN, Seshadri TR. Chemical components of Pongammia Pinnata: Seeds, flowers and stem bark. Letters to editor. Curr Sci 1964;21:614-45.

Roy D, Khanna RN. Structure of synthesis of pongol: A new component from the immature seeds of Pongamia glabra. Indian J Chem 1979;18:525-8.

Croteau R, Kutcahn TM, Lewis NG. Natural products. In: B. Buchanan WG, Jones R, editors. Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiology; 2000. p. 1250-318.

Ziegler F. Alkaloid biosynthesis: Metabolism and trafficking. Ann Rev Plant Biol 2008;59:735-69.

Haig T. Allelochemicals in plants. In: Zeng RS, Mallik AU, Luo S, editors. Allelopathy in Sustainable Agriculture and Forestry. New York: Springer; 2008. p. 63-104.

Soliven FA. The proximate chemical composition of the seed and oil of Philippine oil-bearing seeds: I. Pongamia pinnata Merr. Philipp Agric 1934;23:576-87.

Pathak VP, Saini TR, Khanna RN. Chemical constituents of Pongamia pinnata seed. Phytochemistry 1983b;22:308.

Naghmana R, Muhammad SA, Muhammad KT, Nurdiyana MY, Bohari MY. Isolation and crystal structure of Karanjachromene. Anal Sci 2008;24:21-2.

Roy D, Sharma NN, Khanna RN. Structure and synthesis of iso pongaflavone, a new component of the seeds of Pongamia glabre. Indian J Chem 1977a;15:1138-9.

Pathak VP, Saini TR, Khanna RN. Glabrachalcone, a chromenochalcone from Pongamia glabra seeds. Phytochemistry 1983a;22:1303-4.

Upadhya GS, Narayanaswami G, Kartha AR. Note on the comparative development of fatty acids in ripening seeds of 16 dicot species producing C16-C18 acid fats. Indian J Agric Sci 1974;44:620-2.

Rahul DY, Jain SK, Shashi A, Prajapati SK, Amita V. Pongamia pinnata an overview. Int J Pharm Sci Res 2011;2:496.

Evans SV, Fellows LE, Bell EA. Distribution and systematic significance of basic non protein amino acids and amines in the Tephrosieae. Biochem Syst Ecol 1985;13:271-302.

Nawrat U, Grzybek-Hryncewicz K, Karpiewska A. Susceptibilty of Candida species to antimycotics determined by microdilution method. Mikol Lek 2000;7:19-26.

Conner DE, Beuchat LR. Effects of essential oils from plants on growth of food spoilage yeast. J Food Sci 1984;49:429.

Hanafy MS, Hatem ME. Studies on the antimicrobial activity of Nigella sativa seed (black cumin). J Ethnopharm 1991;34:275-8.

Aggrawal R, Kharya MD, Srivastava R. Antimicrobial and anthelmintic activities of the essential oil of Nigella sativa Linn. Indian J Exp Biol 1979;17:1264-5.

Khan MA, Ashfaq MK, Zuberi HS, Mahmood MS, Gilani AH. The in vivo antifungal activity of the aqueous extract from Nigella sativa seed. Phytother Res 2003;17:183-6.

Mashhadian NV, Rakhshandeh H. Antibacterial and antifungal effects of Nigella sativa extracts against S. aureus, P. aeroginosa and C. albicans. Pak J Med Sci 2005;21:47-52.

Singh VP, Singh HB, Singh RB. The fungicidal effect of neem extracts on some soil borne pathogens of gram (Cicer arietinum). Mycologia 1980;72:1077-93.

Dalleau S, Cateau E, Berges T, Berjeaud J, Limbert C. In vitro activity of essential oils and their major components against Candida albicans yeasts growing planktonically and as biofilms. Int J Antimicrob Agents 2007;29:147.

Kishore N, Mishra AK, Chansouria JP. Fungitoxicity of essential oils against dermatophytes. Mycoses 1993;36:211-5.

Morris JA, Khettry A, Seitz EW. Antimicrobial activity of aroma chemicals and essential oils. J Am Oil Chem Soc 1979;56:595-603.

Ross SA, El-Keltawi NE, Megalla SE. Antimicrobial activity of some Egyptian aromatic plants. Fitoterapia 1980;51:201-5.

Yousef RT, Tawil GG. Antimicrobial activity of volatile oils. Pharmazie 1980;35:698-701.

Hili P, Evans CS, Veness RG. Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil. Lett Appl Microbiol 1997;24:269-75.

Lis-Balchin M, Deans SG. Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol 1997;82:759-62.

Rath CC, Dash SK, Mishra RK. In vitro susceptibility of Japanese mint (Mentha arvensis L.) essential oil against five human pathogens. Indian Perfum 2001;45:57-61.

Charchari S, Dahoun A, Bachi F, Benslimani A. In vitro antimicrobial activity of essential oils of Artemisia herba-alba and Artemisia judaica from Algeria. Riv Ital EPPOS 1996;18:3-6.

Vijaya M, Cass I, Judy G, Nadeem A, Talpur B, Echard W, et al. Antifungal activities of origanum oil against Candida albicans. Mol Cell Biochem 2001;228:111-7.

Nakamura CV, Ishida K, Faccin LC, Filho BP, Cortez DA, Rozental S. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res Microbiol 2004;155:579-86.

Shabnam J, Sobia M, Ibatsam K, Rauf A, Saleem MH. Comparative antimicrobial activity of clove and fennel essential oils against food borne pathogenic fungi and food spoilage bacteria. Afr J Biotechnol 2012;11:16065-70.

Sunita B, Mahendra R. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 2008;3:81-8.

Ewansiha JU, Garba SA, Mawak JD, Oyewole OA. Antimicrobial activity of Cymbopogon citratus (Lemon Grass) and its phytochemical properties. Front Sci 2012;2:214-20.

Fernanda CS, Sara MC, Virginia MS, Deila MS, Botelho NL, Luis RB. Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus. Braz J Pharm 2012;22:1002-10.

Singh G, Sumitra M, Catalan C, Lampasona MP. Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr J 2005b;20:1-6.

Ogunkunle J, Tonia AL. Ethnobotanical and phytochemical studies on some species of Senna in Nigeria. Afr J Biotechnol 2006;5:2020-3.

Cowan MM. Plant products as antimicrobial agents. Clin Microbio Rev 1999;12:564-82.

Sulivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology (Reading) 1995;141:1507-21.

Coleman DC, Bennett DE, Sullivan DJ, Gallagher PJ, Henman MC, Shanley DB, et al. Oral Candida in HIV infection and AIDS: New perspectives/new approaches. Crit Rev Microbiol 1993;19:61-82.

Sobel JD. Vulvovaginal candidosis. Lancet 2007;369:1961-71.

Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev 1995;8:240-59.



How to Cite

TABASSUM, N., V. G. M., R. D, and S. I. “IN VITRO AND IN VIVO ANTIFUNGAL ACTIVITY OF ALKALOID 3,5-bis(4,4’’-Dimethoxy- [1,1’:2’,1’’-Terphenyl]-4’-Yl)-4H-Pyrazole-4,4-Diol FROM DERRIS INDICA (LAM) BENNETT SEEDS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 6, July 2021, pp. 133-40, doi:10.22159/ajpcr.2021.v14i6.41383.



Original Article(s)