DESIGN OF POTENT ANTICANCER MOLECULES COMPRISING PYRAZOLYL-THIAZOLINONE ANALOGS USING MOLECULAR MODELLING STUDIES FOR PHARMACOPHORE OPTIMIZATION

Authors

  • Kunal Raut Department of Pharmaceutical Chemistry, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • Sachin Kothawade Department of Pharmaceutics, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • Vishal Pande Department of Pharmaceutics, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • Sandesh Bole Department of Pharmaceutics, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • SAMPADA NETANE Department of Pharmaceutics, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • Kalyani Autade Department of Pharmacology, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.
  • Ashvini Joshi Department of Pharmaceutical Chemistry, RSM’s N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2023.v16i8.47665

Keywords:

Molecular modeling, QSAR study, NCE, Docking, EGFR inhibitors, ADME

Abstract

Objectives: Numerous tiny receptor tyrosine kinase inhibitors have been reported as anticancer medications over the past 10 years. However, a lot of them lack effectiveness in vivo, selectivity, or do not last long before developing resistance.

Methods: We used molecular modeling research to improve the pharmacophore to get beyond these limitations. For the purpose of linking the chemical makeup of pyrazolyl thiazolinone analogs with their anticancer activity, quantitative structure activity relationship (QSAR) investigations in two dimensions (2D) and three dimensions (3D) were carried out. Pyrazolyl thiazolinone pharmacophore’s stearic, electronic, and hydrophobic requirements were calculated using 3D QSAR.

Results: By leveraging the findings of QSAR investigations, the pharmacophore was refined and new chemical entities (NCEs) were generated. The r2 and q2 values obtained for the best model No. 4 of 2D QSAR were 0.9244 and 0.8701, respectively. A drug-like pharmacokinetic profile was ensured by studying the binding affinities of proposed NCEs on epidermal growth factor receptor-TK using docking studies and estimating their absorption, distribution, metabolism, and excretion features.

Conclusion: When statistical significance is closely examined, predictability of the model and its residuals (actual activity minus predicted activity) is found to be close to zero, leading us to draw the conclusion that the logic behind the design of NCEs was determined to be sound.

Downloads

Download data is not yet available.

References

Levitzki A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol Ther 1999;82:231-9. doi: 10.1016/s0163-7258(98)00066-7, PMID 10454200

Caffrey DR, Lunney EA, Moshinsky DJ. Prediction of specificity-determining residues for small-molecule kinase inhibitors. BMC Bioinformatics 2008;9:491. doi: 10.1186/1471-2105-9-491, PMID 19032760

Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009;9:28-39. doi: 10.1038/nrc2559, PMID 19104514

MacKerell AD, Roux B. In: Becker OM, Watanabe M, editors. Computational Biochemistry and Biophysics. New York: Marcel Dekker; 2001.

Menozzi G, Mosti L, Fossa P, Mattioli F, Ghia MW. ω-Dialkylaminoalkyl ethers of phenyl-(5-substituted 1-phenyl-1 H -pyrazol-4-yl) methanols with analgesic and anti-inflammatory activity. J Heterocycl Chem 1997;34:963-8. doi: 10.1002/jhet.5570340339

Lv PC, Li HQ, Sun J, Zhou Y, Zhu HL. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg Med Chem 2010;18:4606-14. doi: 10.1016/j. bmc.2010.05.034, PMID 20627597

Havrylyuk D, Mosula L, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur J Med Chem 2010;45:5012-21. doi: 10.1016/j.ejmech.2010.08.008, PMID 20810193

Dudek AZ, Arodz T, Gálvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): A review. Comb Chem High Throughput Screen 2006;9:213-28. doi: 10.2174/138620706776055539, PMID 16533155

Liu Q, Wang HG. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors. Commun Integr Biol 2012;5:557-65. doi: 10.4161/cib.21554, PMID 23336025

Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform 2010;29:476-88. doi: 10.1002/minf.201000061, PMID 27463326

Consonni V, Todeschini R, Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies-methods and applications. 2010;8:29-93.

VLifeMDS. Molecular Design Suite Version 3.5. Pune, India: V-life Sciences Technologies Pvt. Ltd.; 2004.

Qiu KM, Wang HH, Wang LM, Luo Y, Yang XH, Wang XM, et al. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg Med Chem 2012;20:2010-8. doi: 10.1016/j.bmc.2012.01.051, PMID 22361272

Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 1996;17:490-519. doi: 10.1002/(SICI)1096- 987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aid Mol Des 2003;17:241-53. doi: 10.1023/a:1025386326946, PMID 13677490

Baumann K. Chance correlation in variable subset regression: Influence of the objective function, the selection mechanism, and ensemble averaging. QSAR Comb Sci 2005;24:1033-46. doi: 10.1002/ qsar.200530134

Leach AR, Gillet VJ. An Introduction to Chemoinformatics. Berlin: Springer; 2007. p. 125-70.

Topliss JG, Edwards RP. Chance factors in studies of quantitative structure-activity relationships. J Med Chem 1979;22:1238-44. doi: 10.1021/jm00196a017, PMID 513071

Ajmani S, Jadhav K, Kulkarni SA. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J Chem Inf Model 2006;46:24-31. doi: 10.1021/ci0501286, PMID 16426036

Roy PP, Paul S, Mitra I, Roy K. On two novel parameters for validation of predictive QSAR models. Molecules 2009;14:1660-701. doi: 10.3390/molecules14051660, PMID 19471190

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 1998;41:2481-91. doi: 10.1021/jm9700575, PMID 9651153

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830

Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a

-anilinoquinazoline inhibitor. J Biol Chem 2002;277:46265-72. doi:10.1074/jbc.M207135200, PMID 12196540

Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235- 49. doi: 10.1016/s1056-8719(00)00107-6, PMID 11274893

Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 2002;277:46265-72. doi: 10.1074/jbc.M207135200, PMID 12196540

Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002;110:775-87. doi: 10.1016/ s0092-8674(02)00963-7, PMID 12297050

Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006;2:358-64. doi: 10.1038/ nchembio799, PMID 16783341

QikProp, Version 2.2. New York: Schrödinger LLC; 2005.

Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004;1:337-41. doi: 10.1016/j. ddtec.2004.11.007, PMID 24981612

Published

07-08-2023

How to Cite

Raut, K., S. Kothawade, V. Pande, S. Bole, SAMPADA NETANE, K. Autade, and A. Joshi. “DESIGN OF POTENT ANTICANCER MOLECULES COMPRISING PYRAZOLYL-THIAZOLINONE ANALOGS USING MOLECULAR MODELLING STUDIES FOR PHARMACOPHORE OPTIMIZATION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 16, no. 8, Aug. 2023, pp. 84-93, doi:10.22159/ajpcr.2023.v16i8.47665.

Issue

Section

Original Article(s)