PHYTOCHEMICAL CHARACTERIZATION, IN VITRO AND IN SILICO STUDIES ON THERAPEUTIC POTENTIAL OF EDIBLE AND WILD MUSHROOMS

Authors

  • JEYA PREETHI S Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • SHARMILA P Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • SANGEETHA K Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
  • PONMURUGAN P Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.Biomedical Research Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i1.53352

Keywords:

MUSHROOM, Antioxidant, antimicrobial, antiinflammatory, molecular docking

Abstract

Objective: The present study evaluates the in vitro and in silico analyses of mushrooms such as Agaricus bisporus, Pleurotus ostreatus, Ganoderma wiiroense, and Pleurotus tuber-regium.

Methods: The quantitative and qualitative analysis of the mushrooms was analyzed and their antioxidant, antimicrobial, and anti-inflammatory assays were done. In addition, molecular docking of their bioactive compounds was docked against the targeted proteins.

Results: The study found that the ethanolic extract of P. ostreatus contained high amounts of carbohydrates, phenolics, and flavonoids. The hot water extract of A. bisporus showed antioxidant activity in phosphomolybdenum assay, while G. wiiroense showed the highest antioxidant activity in superoxide radical scavenging assay. The ethanol extract of the latter also showed maximum 2,2-Diphenyl-picrylhydrazyl radical scavenging and ferric-reducing antioxidant power (reducing activity). A. bisporus hot water extract showed the highest inhibitory activity against Escherichia coli, while G. wiiroense showed the highest anti-inflammatory activity. In silico analysis revealed that chlorogenic and ganodermic acids had high binding affinity toward protein targets.

Conclusion: The study compared the biological activities of commercial edible and wild mushrooms extracts, finding that active compounds from both mushrooms were effective against diseases such as cancer, tuberculosis, and rheumatoid arthritis through computational approaches

Downloads

Download data is not yet available.

References

Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol. 2015;2015(1):376387. doi: 10.1155/2015/376387, PMID: 25685150

Günç Ergönül P, Akata I, Kalyoncu F, Ergönül B. Fatty acid compositions of six wild edible mushroom species. ScientificWorldJournal. 2013;2013(1):163964. doi: 10.1155/2013/163964, PMID: 23844377

Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5(2):35-46. doi: 10.1016/j.phanu.2017.02.001

Fernandes Â, Barreira JC, Antonio AL, Rafalski A, Morales P, Férnandez-Ruiz V, et al. Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: Effects on macro-and micro-elements. Eur Food Res Technol. 2016;242(7):1169-75. doi: 10.1007/s00217-015-2621-9

Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech. 2018;8(8):334. doi: 10.1007/s13205-018-1358-0, PMID: 30073119

Largent DL. How to Identify Mushrooms to Genus III: Microscopic Features. Eureka: Mad River Press; 1977.

Vishniac HS. How to Identify Mushrooms to Genus. I: Macroscopic Features. Eureka: Mad River Press; 1978.

Dulay RM, Cabrera EC, Kalaw SP, Reyes RG. Nucleotide sequencing and identification of wild mushrooms from the Philippines. Biocatal Agric Biotechnol. 2020;27:101666. doi: 10.1016/j.bcab.2020.101666

Raghuramulu N, Madhavan NK, Kalyanasundaram S. A manual of laboratory techniques. India, Hyderabad: National Institute of Nutrition, The Indian Council of Medical Research; 2003. p. 56-8.

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. doi: 10.1016/S0021-9258(18)64849-5, PMID: 13428781

Ramos M, Burgos N, Barnard A, Evans G, Preece J, Graz M, et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019;292:176-87. doi: 10.1016/j.foodchem.2019.04.035, PMID: 31054663

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41. doi: 10.1006/abio.1999.4019, PMID: 10222007

Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-87. doi: 10.1016/0003-2697(71)90370-8, PMID: 4943714

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199-200. doi: 10.1038/1811199a0

Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396-402. doi: 10.1021/ jf9913458, PMID: 10956123

Rodríguez-Tudela JL, Barchiesi F, Bille J, Chryssanthou E, Cuenca- Estrellaa M, Denning D, et al. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clin Microbiol Infect. 2003;9(8);1-8.

Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia. 1999;70(3):251-7. doi: 10.1016/S0367-326X(99)00030-1

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID: 28256516

Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, Gupta DK. Mushrooms: From nutrition to mycoremediation. Environ Sci Pollut Res Int. 2017;24(24):19480-93. doi: 10.1007/s11356-017-9826-3, PMID: 28770504

Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med. 1999;221(4):281-93. doi: 10.1046/j.1525-1373.1999.d01-86.x, PMID: 10460691

Wickramasinghe MA, Nadeeshani H, Sewwandi SM, Rathnayake I, Kananke TC, Liyanage R. Comparison of nutritional composition, bioactivities, and FTIR-ATR microstructural properties of commercially grown four mushroom species in Sri Lanka; Agaricus bisporus, Pleurotus ostreatus, Calocybe sp.(MK-white), Ganoderma lucidum. Food Prod Process Nutr. 2023;5(1):43. doi: 10.1186/s43014- 023-00158-9

Devi MR, Krishnakumari S. Quantitative estimation of primary and secondary metabolites in hot aqueous extract of Pleurotus sajor caju. J Pharmacogn Phytochem. 2015;4(3):198-202.

Gogavekar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. J Food Sci Technol. 2014;51(8):1483-91. doi: 10.1007/s13197-012-0656-5, PMID: 25114338

Goyal R, Grewal RB, Goyal RK. Nutritional attributes of Agaricus bisporus and Pleurotus sajor caju mushrooms. Nutr Health. 2006;18(2):179-84. doi: 10.1177/026010600601800209, PMID: 16859180

Ferreira IC, Barros L, Abreu RM. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-60. doi: 10.2174/092986709787909587, PMID: 19355906

Nagaraj K, Mallikarjun N, Naika R, Venugopal TM. Antioxidative activities of wild macrofungi Ganoderma applanatum (Pers.). Asian J Pharm Clin Res. 2014;7(Suppl 2):166-71.

Boh B, Berovic M, Zhang J, Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev. 2007;13: 265-301. doi: 10.1016/S1387-2656(07)13010-6, PMID: 17875480

Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66-101. doi: 10.1016/j. phytochem.2015.03.010, PMID: 25975187

Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol. 2016;50:193-210. doi: 10.1016/j.tifs.2016.02.005

Saeedi RU, Sultana A, Rahman KH. Medicinal properties of different parts of Acacia nilotica Linn.(babul), its phytoconstituents and diverse pharmacological activities. Int J Pharm Pharm Sci. 2020 Feb 1;12: 8-14.

Islam MR, Awal MA, Khames A, Abourehab MA, Samad A, Hassan WM, et al. Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against colorectal cancer by targeting thymidylate synthase. Molecules. 2022;27(7):2089. doi: 10.3390/molecules27072089, PMID: 35408488

Lu S, Ji M, Ni D, Zhang J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today. 2018;23(2):359-65. doi: 10.1016/j.drudis.2017.10.001, PMID: 29030241 33. Yadav MK, Ahmad S, Raza K, Kumar S, Eswaran M, Pasha Km M. Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn. 2023;41(5):1527-39. doi: 10.1080/07391102.2021.2021993, PMID: 34974820

Febrina E, Alamhari RK, Abdulah R, Lestari K, Levita J, Supratman U. Molecular docking and molecular dynamics studies of Acalypha indica L. phytochemical constituents with caspase-3. Int J Appl Pharm. 2021;13(4):210-5. doi: 10.22159/ijap.2021.v13s4.43861

Hermanto F, Subarnas A, Bambang Sutjiatmo AB, Berbudi A. Molecular docking study and pharmacophore modelling of ursolic acid as an antimalarial using structure-based drug design method. Int J Appl Pharm. 2023 Jan 7;15(1):206-11. doi: 10.22159/ ijap.2023v15i1.46298

Published

07-01-2025

How to Cite

S, J. P., SHARMILA P, SANGEETHA K, and PONMURUGAN P. “PHYTOCHEMICAL CHARACTERIZATION, IN VITRO AND IN SILICO STUDIES ON THERAPEUTIC POTENTIAL OF EDIBLE AND WILD MUSHROOMS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 1, Jan. 2025, pp. 68-80, doi:10.22159/ajpcr.2025v18i1.53352.

Issue

Section

Original Article(s)