PHYTOCHEMICAL CHARACTERIZATION, IN VITRO AND IN SILICO STUDIES ON THERAPEUTIC POTENTIAL OF EDIBLE AND WILD MUSHROOMS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i1.53352Keywords:
MUSHROOM, Antioxidant, antimicrobial, antiinflammatory, molecular dockingAbstract
Objective: The present study evaluates the in vitro and in silico analyses of mushrooms such as Agaricus bisporus, Pleurotus ostreatus, Ganoderma wiiroense, and Pleurotus tuber-regium.
Methods: The quantitative and qualitative analysis of the mushrooms was analyzed and their antioxidant, antimicrobial, and anti-inflammatory assays were done. In addition, molecular docking of their bioactive compounds was docked against the targeted proteins.
Results: The study found that the ethanolic extract of P. ostreatus contained high amounts of carbohydrates, phenolics, and flavonoids. The hot water extract of A. bisporus showed antioxidant activity in phosphomolybdenum assay, while G. wiiroense showed the highest antioxidant activity in superoxide radical scavenging assay. The ethanol extract of the latter also showed maximum 2,2-Diphenyl-picrylhydrazyl radical scavenging and ferric-reducing antioxidant power (reducing activity). A. bisporus hot water extract showed the highest inhibitory activity against Escherichia coli, while G. wiiroense showed the highest anti-inflammatory activity. In silico analysis revealed that chlorogenic and ganodermic acids had high binding affinity toward protein targets.
Conclusion: The study compared the biological activities of commercial edible and wild mushrooms extracts, finding that active compounds from both mushrooms were effective against diseases such as cancer, tuberculosis, and rheumatoid arthritis through computational approaches
Downloads
References
Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol. 2015;2015(1):376387. doi: 10.1155/2015/376387, PMID: 25685150
Günç Ergönül P, Akata I, Kalyoncu F, Ergönül B. Fatty acid compositions of six wild edible mushroom species. ScientificWorldJournal. 2013;2013(1):163964. doi: 10.1155/2013/163964, PMID: 23844377
Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5(2):35-46. doi: 10.1016/j.phanu.2017.02.001
Fernandes Â, Barreira JC, Antonio AL, Rafalski A, Morales P, Férnandez-Ruiz V, et al. Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: Effects on macro-and micro-elements. Eur Food Res Technol. 2016;242(7):1169-75. doi: 10.1007/s00217-015-2621-9
Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech. 2018;8(8):334. doi: 10.1007/s13205-018-1358-0, PMID: 30073119
Largent DL. How to Identify Mushrooms to Genus III: Microscopic Features. Eureka: Mad River Press; 1977.
Vishniac HS. How to Identify Mushrooms to Genus. I: Macroscopic Features. Eureka: Mad River Press; 1978.
Dulay RM, Cabrera EC, Kalaw SP, Reyes RG. Nucleotide sequencing and identification of wild mushrooms from the Philippines. Biocatal Agric Biotechnol. 2020;27:101666. doi: 10.1016/j.bcab.2020.101666
Raghuramulu N, Madhavan NK, Kalyanasundaram S. A manual of laboratory techniques. India, Hyderabad: National Institute of Nutrition, The Indian Council of Medical Research; 2003. p. 56-8.
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. doi: 10.1016/S0021-9258(18)64849-5, PMID: 13428781
Ramos M, Burgos N, Barnard A, Evans G, Preece J, Graz M, et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019;292:176-87. doi: 10.1016/j.foodchem.2019.04.035, PMID: 31054663
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41. doi: 10.1006/abio.1999.4019, PMID: 10222007
Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-87. doi: 10.1016/0003-2697(71)90370-8, PMID: 4943714
Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199-200. doi: 10.1038/1811199a0
Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396-402. doi: 10.1021/ jf9913458, PMID: 10956123
Rodríguez-Tudela JL, Barchiesi F, Bille J, Chryssanthou E, Cuenca- Estrellaa M, Denning D, et al. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clin Microbiol Infect. 2003;9(8);1-8.
Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia. 1999;70(3):251-7. doi: 10.1016/S0367-326X(99)00030-1
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID: 28256516
Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, Gupta DK. Mushrooms: From nutrition to mycoremediation. Environ Sci Pollut Res Int. 2017;24(24):19480-93. doi: 10.1007/s11356-017-9826-3, PMID: 28770504
Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med. 1999;221(4):281-93. doi: 10.1046/j.1525-1373.1999.d01-86.x, PMID: 10460691
Wickramasinghe MA, Nadeeshani H, Sewwandi SM, Rathnayake I, Kananke TC, Liyanage R. Comparison of nutritional composition, bioactivities, and FTIR-ATR microstructural properties of commercially grown four mushroom species in Sri Lanka; Agaricus bisporus, Pleurotus ostreatus, Calocybe sp.(MK-white), Ganoderma lucidum. Food Prod Process Nutr. 2023;5(1):43. doi: 10.1186/s43014- 023-00158-9
Devi MR, Krishnakumari S. Quantitative estimation of primary and secondary metabolites in hot aqueous extract of Pleurotus sajor caju. J Pharmacogn Phytochem. 2015;4(3):198-202.
Gogavekar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. J Food Sci Technol. 2014;51(8):1483-91. doi: 10.1007/s13197-012-0656-5, PMID: 25114338
Goyal R, Grewal RB, Goyal RK. Nutritional attributes of Agaricus bisporus and Pleurotus sajor caju mushrooms. Nutr Health. 2006;18(2):179-84. doi: 10.1177/026010600601800209, PMID: 16859180
Ferreira IC, Barros L, Abreu RM. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-60. doi: 10.2174/092986709787909587, PMID: 19355906
Nagaraj K, Mallikarjun N, Naika R, Venugopal TM. Antioxidative activities of wild macrofungi Ganoderma applanatum (Pers.). Asian J Pharm Clin Res. 2014;7(Suppl 2):166-71.
Boh B, Berovic M, Zhang J, Zhi-Bin L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev. 2007;13: 265-301. doi: 10.1016/S1387-2656(07)13010-6, PMID: 17875480
Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66-101. doi: 10.1016/j. phytochem.2015.03.010, PMID: 25975187
Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol. 2016;50:193-210. doi: 10.1016/j.tifs.2016.02.005
Saeedi RU, Sultana A, Rahman KH. Medicinal properties of different parts of Acacia nilotica Linn.(babul), its phytoconstituents and diverse pharmacological activities. Int J Pharm Pharm Sci. 2020 Feb 1;12: 8-14.
Islam MR, Awal MA, Khames A, Abourehab MA, Samad A, Hassan WM, et al. Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against colorectal cancer by targeting thymidylate synthase. Molecules. 2022;27(7):2089. doi: 10.3390/molecules27072089, PMID: 35408488
Lu S, Ji M, Ni D, Zhang J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today. 2018;23(2):359-65. doi: 10.1016/j.drudis.2017.10.001, PMID: 29030241 33. Yadav MK, Ahmad S, Raza K, Kumar S, Eswaran M, Pasha Km M. Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn. 2023;41(5):1527-39. doi: 10.1080/07391102.2021.2021993, PMID: 34974820
Febrina E, Alamhari RK, Abdulah R, Lestari K, Levita J, Supratman U. Molecular docking and molecular dynamics studies of Acalypha indica L. phytochemical constituents with caspase-3. Int J Appl Pharm. 2021;13(4):210-5. doi: 10.22159/ijap.2021.v13s4.43861
Hermanto F, Subarnas A, Bambang Sutjiatmo AB, Berbudi A. Molecular docking study and pharmacophore modelling of ursolic acid as an antimalarial using structure-based drug design method. Int J Appl Pharm. 2023 Jan 7;15(1):206-11. doi: 10.22159/ ijap.2023v15i1.46298
Published
How to Cite
Issue
Section
Copyright (c) 2024 JEYA PREETHI S, Sharmila P, Sangeetha K, PONMURUGAN P
This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.