HIGH-FAT DIET-INDUCED OXIDATIVE STRESS AND ITS IMPACT ON METABOLIC SYNDROME: A REVIEW

  • Swaraj Bandhu Kesh Department of Physiology, Government Medical College Rajnandgaon, Rajnandgaon, Chhattisgarh 491441.
  • Debashree Sarkar Department of Physiology, PT. JNM Medical College & Hospital, Raipur, Chhattisgarh, India.
  • Krishnendu Manna Department of Physiology, University College of Science & Technology, 92, APC Road, Kolkata-700009, West Bengal, India.

Abstract

ABSTRACT
Environmental factors such as high saturated fat content in a diet affect pro- and antioxidative balances in metabolic tissues. High-dietary fat intake
promotes the development of obesity and metabolic disorders in humans and rodents as a result of disproportion between energy intake and energy
expenditure. The dreaded events of high-fat diet (HFD) are obesity, hypertension, cardiovascular and cerebrovascular anarchy, Type II diabetes,
infertility, and even cancer. HFD - induced systemic oxidative stress insults an imbalance between oxidants derivatives production and antioxidants
defenses. Reactive oxygen species are mostly reasoned to be detrimental for health. Many evidences regarding HFD - elicited oxidative stress gathered
over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress. The hypothesis
that oxidative stress plays a prodigious role in the development of metabolic disorders, especially insulin resistance, hyperlipidemia, cardiovascular
disease or hepatic steatosis, and steatohepatitis. In this review, we elucidated the mechanistic links between HFD - induced oxidative stress and its
impact on metabolic complications development.
Keywords: Adenosine monophosphate-activated protein kinase, Complications, High-fat diet, Metabolic syndrome, Oxidative stress.

Author Biographies

Swaraj Bandhu Kesh, Department of Physiology, Government Medical College Rajnandgaon, Rajnandgaon, Chhattisgarh 491441.

Assistant Professor

Department of Physiology

Debashree Sarkar, Department of Physiology, PT. JNM Medical College & Hospital, Raipur, Chhattisgarh, India.
Professor and Head, Department of Physiology
Krishnendu Manna, Department of Physiology, University College of Science & Technology, 92, APC Road, Kolkata-700009, West Bengal, India.
Senior Research Fellow, Department of Physiology

References

1. Vargas-Robles H, Rios A, Arellano-Mendoza M, Escalante BA,
Schnoor M. Antioxidative diet supplementation reverses high-fat dietinduced
increases
of
cardiovascular risk
factors in mice. Oxid
Med Cell
Longev
2015;2015:467471.
2. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesityassociated
oxidative
stress: Strategies finalized
to
improve redox
state.
Int
J Mol Sci 2013;14:10497-538.
3. Auberval N, Dal S, Bietiger W, Pinget M, Jeandidier N, MaillardPedracini
E,
et
al.
Metabolic and
oxidative
stress
markers in
wistar
rats
after
2
months
on a high-fat diet. Diabetol Metab Syndr 2014;6:130.
4. McLaren L. Socioeconomic status and obesity. Epidemiol Rev
2007;29:29-48.
5. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends
in overweight among US children and adolescents, 1999-2000. JAMA
2002;288:1728-32.
6. Y Lee C. The Effect of high-fat diet-induced pathophysiological
changes in the gut on obesity: What should be the ideal treatment? Clin
Transl Gastroenterol 2013;4:e39.
7. Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative
stress and metabolic pathologies: From an adipocentric point of view.
Oxid Med Cell Longev 2014;2014:908539.
8. Charradi K, Elkahoui S, Limam F, Aouani E. High-fat diet induced an
oxidative stress in white adipose tissue and disturbed plasma transition
metals in rat: Prevention by grape seed and skin extract. J Physiol Sci
2013;63:445-55.
9. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y,
et al. Increased oxidative stress in obesity and its impact on metabolic
syndrome. J Clin Invest 2004;114:1752-61.
10. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res
Pract 2014;2014:943162.
11. Pessayre D, Berson A, Fromenty B, Mansouri A. Mitochondria in
steatohepatitis. Semin Liver Dis 2001;21:57-69.
12. Spady DK, Woollett LA, Dietschy JM. Regulation of plasma LDLcholesterol
levels
by
dietary cholesterol
and
fatty acids.
Annu
Rev Nutr
1993;13:355-81.
13. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol
homeostasis. Science 1986;232:34-47.
14. Horton JD, Goldstein JL, Brown MS. SREBPs: Activators of the
complete program of cholesterol and fatty acid synthesis in the liver.
J Clin Invest 2002;109:1125-31.
15. Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatosis and
steatohepatitis. Mitochondrial dysfunction in steatohepatitis. Am J
Physiol Gastrointest Liver Physiol 2002;282(2):G193-99.
16. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S,
Misu H, et al. Increased oxidative stress precedes the onset of
high-fat diet-induced insulin resistance and obesity. Metabolism
2008;57(8):1071-7.
17. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly
improves obesity-associated inflammation and diabetes in mouse
models of diabesity. Endocrinology 2008;149(7):3549-58.
18. Rahman MM, Varghese Z, Moorhead JF. Paradoxical increase in nitric
oxide synthase activity in hypercholesterolaemic rats with impaired
renal function and decreased activity of nitric oxide. Nephrol Dial
Transplant 2001;16(2):262-8.
19. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin
resistance. Gastroenterology 2007;132(6):2169-80.
20. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance – a
mini-review. Gerontology 2009;55(4):379-86.
21. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species
facilitate adipocyte differentiation by accelerating mitotic clonal
expansion. J Biol Chem 2009;284(16):10601-9.
22. Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative
stress in human endothelial cells. FASEB J 1999;13(10):1231-8.
23. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M.
Leptin induces mitochondrial superoxide production and monocyte
chemoattractant protein-1 expression in aortic endothelial cells by
increasing fatty acid oxidation via protein kinase A. J Biol Chem
2001;276(27):25096-100.
24. Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways
involved in human vascular smooth muscle cell proliferation and
matrix metalloproteinase-2 expression induced by leptin: Inhibitory
effect of metformin. Diabetes 2005;54(7):2227-34.
25. Maingrette F, Renier G. Leptin increases lipoprotein lipase secretion
by macrophages: Involvement of oxidative stress and protein kinase C.
Diabetes 2003;52(8):2121-8.
26. Wang CH, Wang CC, Huang HC, Wei YH. Mitochondrial dysfunction
leads to impairment of insulin sensitivity and adiponectin secretion in
adipocytes. FEBS J 2013;280(4):1039-50.
27. Ye R, Scherer PE. Adiponectin, driver or passenger on the road to
insulin sensitivity? Mol Metab 2013;2(3):133-41.
28. Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M.
Systemic oxidative stress is associated with visceral fat accumulation
and the metabolic syndrome. Circ J 2006;70(11):1437-42.
29. Spagnuolo MI, Cicalese MP, Caiazzo MA, Franzese A,
Squeglia V, Assante LR, et al. Relationship between severe obesity and
gut inflammation in children: What’s next? Ital J Pediatr 2010;36:66.
30. Duparc T, Naslain D, Colom A, Muccioli GG, Massaly N, Delzenne NM,
et al. Jejunum inflammation in obese and diabetic mice impairs enteric
glucose detection and modifies nitric oxide release in the hypothalamus.
Antioxid Redox Signal 2011;14(3):415-23.
31. Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, et al. Upper
intestinal lipids trigger a gut-brain-liver axis to regulate glucose
production. Nature 2008;452(7190):1012-6.
32. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, et al.
High-fat diet: Bacteria interactions promote intestinal inflammation
which precedes and correlates with obesity and insulin resistance in
mouse. PLoS One 2010;5:e12191.
33. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The
gut microbiota as an environmental factor that regulates fat storage.
Proc Natl Acad Sci U S A 2004;101(44):15718-23.
34. Bugger H, Abel ED. Molecular mechanisms for myocardial
mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond)
2008;114(3):195-210.
35. Nicolson GL. Metabolic syndrome and mitochondrial function:
Molecular replacement and antioxidant supplements to prevent
membrane peroxidation and restore mitochondrial function. J Cell
Biochem 2007;100(6):1352-69.
36. Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic
oxidative alterations are associated with visceral adiposity
and liver steatosis in patients with metabolic syndrome. J Nutr
2006;136(12):3022-6.
37. Armutcu F, Ataymen M, Atmaca H, Gurel A. Oxidative stress markers,
C-reactive protein and heat shock protein 70 levels in subjects with
metabolic syndrome. Clin Chem Lab Med 2008;46(6):785-90.
38. Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the
metabolic syndrome: An update on antioxidant therapies. Curr Pharm
Des 2013;19(27):4806-17.
51
Asian J Pharm Clin Res, Vol 9, Issue 1, 2016, 47-52
Kesh et al.
39. Chalasani N. Statins and hepatotoxicity: Focus on patients with fatty
liver. Hepatology 2005;41(4):690-5.
40. Kesh SB, Sikder K, Manna K, Das DK, Khan A, Das N, et al. Promising
role of ferulic acid, atorvastatin and their combination in ameliorating
high fat diet-induced stress in mice. Life Sci 2013;92(17-19):938-49.
41. Milagro FI, Campión J, Martínez JA. Weight gain induced by highfat
feeding
involves
increased
liver
oxidative
stress.
Obesity (Silver

Spring)
2006;14(7):1118-23.
42. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression
of tumor necrosis factor-alpha: Direct role in obesity-linked insulin
resistance. Science 1993;259(5091):87-91.
43. Baker RG, Hayden MS, Ghosh S. NF-?B, inflammation, and metabolic
disease. Cell Metab 2011;13(1):11-22.
44. Jaskiewicz K, Rzepko R, Sledzinski Z. Fibrogenesis in fatty liver
associated with obesity and diabetes mellitus type 2. Dig Dis Sci
2008;53(3):785-8.
45. Leclercq IA. Pathogenesis of steatohepatitis: Insights from the study of
animal models. Acta Gastroenterol Belg 2007;70(1):25-31.
46. Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsioninduced
rat
model
of
nonalcoholic steatohepatitis.
Life
Sci

2006;79:1100-7.
47. Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL,
et al. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates
ApoE-mediated atherosclerosis in mice. PLoS One 2008;3(11):e3791.
48. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic
inflammation in fat plays a crucial role in the development of obesityrelated
insulin resistance. J
Clin
Invest 2003;112(12):1821-30.
49. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Rajesh G. A novel view
of metabolic syndrome. Metab Syndr Relat Disord 2004;2(1):2-8.
50. Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome.
Life Sci 2009;84(21-22):705-12.
51. Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang DY, Wang A, et al.
Reversal of diet-induced hepatic steatosis and hepatic insulin resistance
by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1
and 2. J Clin Invest 2006;116(3):817-24.
52. Day CP, James OF. Steatohepatitis: A tale of two “hits”?
Gastroenterology 1998;114(4):842-5.
53. Anderson N, Borlak J. Molecular mechanisms and therapeutic targets
in steatosis and steatohepatitis. Pharmacol Rev 2008;60(3):311-57.
54. Kojima H, Sakurai S, Uemura M, Fukui H, Morimoto H, Tamagawa Y.
Mitochondrial abnormality and oxidative stress in nonalcoholic
steatohepatitis. Alcohol Clin Exp Res 2007;31 Suppl 1:S61-6.
55. Han JW, Zhan XR, Li XY, Xia B, Wang YY, Zhang J, et al. Impaired
PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats.
World J Gastroenterol 2010;16(48):6111-8.
56. Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased
apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats
is associated with c-Jun NH2-terminal kinase activation and elevated
proapoptotic Bax. J Nutr 2008;138(10):1866-71.
57. Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free
radicals and oxidative stress in NAFLD/NASH. Free Radic Res
2013;47(11):869-80.
58. Hardie DG. AMPK: A key regulator of energy balance in the single cell
and the whole organism. Int J Obes (Lond) 2008;32 Suppl 4:S7-12.
59. Hwang JT, Kwon DY, Yoon SH. AMP-activated protein kinase:
A potential target for the diseases prevention by natural occurring
polyphenols. N Biotechnol 2009;26(1-2):17-22.
60. Lindholm CR, Ertel RL, Bauwens JD, Schmuck EG, Mulligan JD,
Saupe KW. A high-fat diet decreases AMPK activity in multiple tissues
in the absence of hyperglycemia or systemic inflammation in rats.
J Physiol Biochem 2013;69(2):165-75.
61. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB.
Diet-induced obesity alters AMP kinase activity in hypothalamus and
skeletal muscle. J Biol Chem 2006;281(28):18933-41.
62. Richter EA, Ruderman NB. AMPK and the biochemistry of
exercise: Implications for human health and disease. Biochem J
2009;418(2):261-75.
63. Rojas J, Arraiz N, Aguirre M, Velasco M, Bermúdez V. AMPK as
Target for Intervention in Childhood and Adolescent Obesity. J Obes
2011;2011:252817.
64. Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, et al. AMPKalpha2
deletion causes aberrant expression and activation of NAD(P)H
oxidase and consequent endothelial dysfunction in vivo: Role of 26S
proteasomes. Circ Res 2010;106(6):1117-28.
65. Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, et al. Activation
of the AMPK-FOXO3 pathway reduces fatty acid-induced increase
in intracellular reactive oxygen species by upregulating thioredoxin.
Diabetes 2009;58(10):2246-57.
66. Xie Z, Zhang J, Wu J, Viollet B, Zou MH. Upregulation of
mitochondrial uncoupling protein-2 by the AMP-activated protein
kinase in endothelial cells attenuates oxidative stress in diabetes.
Diabetes 2008;57(12):3222-30.
67. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT.
Hyperglycemia promotes oxidative stress through inhibition of
thioredoxin function by thioredoxin-interacting protein. J Biol Chem
2004;279(29):30369-74.
68. Mandl J, Mészáros T, Bánhegyi G, Hunyady L, Csala M. Endoplasmic
reticulum: Nutrient sensor in physiology and pathology. Trends
Endocrinol Metab 2009;20(4):194-201.
69. Schröder M, Kaufman RJ. The mammalian unfolded protein response.
Annu Rev Biochem 2005;74:739-89.
70. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory
basis of metabolic disease. Cell 2010;140(6):900-17.
71. Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER
stress in Alzheimer’s disease: A novel neuronal trigger for inflammation
and Alzheimer’s pathology. J Neuroinflammation 2009;6:41.
72. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the
inflammatory response. Nature 2008;454(7203):455-62.
73. Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation
of AMP-activated protein kinase inhibits oxidized LDL-triggered
endoplasmic reticulum stress in vivo. Diabetes 2010;59(6):1386-96.
74. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, et al.
AMP-activated protein kinase protects cardiomyocytes against hypoxic
injury through attenuation of endoplasmic reticulum stress. Mol Cell
Biol 2005;25(21):9554-75.
75. Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase
inhibits NF-?B signaling and inflammation: Impact on healthspan and
lifespan. J Mol Med (Berl) 2011;89(7):667-76.
Statistics
472 Views | 2180 Downloads
How to Cite
Kesh, S. B., D. Sarkar, and K. Manna. “HIGH-FAT DIET-INDUCED OXIDATIVE STRESS AND ITS IMPACT ON METABOLIC SYNDROME: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 9, no. 1, Jan. 2016, pp. 47-52, https://innovareacademics.in/journals/index.php/ajpcr/article/view/8915.
Section
Review Article(s)