• Arif Arrahman Department of Pharmaceutical-Medicinal Chemistry and Bioanalysis, Faculty of Pharmacy, Universitas Indonesia, Depok 16424,
  • Rezi Riadhi Syahdi Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Hana Permatasari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Intan Fikri Purnama Sari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Abdul Munim Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.


Objective: This study aimed to determine the inhibitory activity of 1-butyl-3-methylimidazolium bromide ([bmim]Br) extracts of melinjo seeds
(Gnetum gnemon) on dipeptidyl peptidase-4 (DPP-4).
Methods: Melinjo seeds were extracted by a [bmim]Br microwave-assisted method using various extraction parameters and the inhibitory activity
of DPP-4 of all extracts was determined in 96-well microplates using Cayman inhibitor screening assay. Determination of trans-resveratrol content
was conducted using a reverse-phase high-performance liquid chromatography method. The total phenolic content was determined using a 96-well
microplate reader. Data analysis for the determination of the optimal extraction conditions was developed by response surface methodology.
Results: The extract obtained from the third run showed the highest inhibition (28.73%) against DPP-4 activity with the total phenolic content of
1.96 mg gallic acid equivalent/g the seed powder.
Conclusion: The analytical results revealed the following optimal conditions: Solvent concentration 1.5 M, liquid-solid ratio 23:1, and extraction time
15 min.

Keywords: Gnetum gnemon, [bmim]Br, Trans-resveratrol, Microwave-assisted extraction, Dipeptidyl peptidase-4, Phenolic content.


1. World Health Organization. Definition, Diagnosis and Classification
of Diabetes Mellitus and its Complications. Part 1: Diagnosis
and Classification of Diabetes Mellitus. Geneva: Department of
Noncommunicable Disease Surveillance; 2009.
2. Geetha P, Shanmugasundharam P. Drug utilization evaluation of
antidiabetic drugs among Type 2 diabetes patients of Tamil Nadu. Asian
J Pharm Clin Res 2017;10:202-5.
3. Patel B, Ghate M. Recent approaches to medicinal chemistry and
therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur
J Med Chem 2014;74:574-605.
4. Anhê F, Desjardins Y, Pilon G, Dudonné S, Genovese M, Lajolo F, et al.
Polyphenols and Type 2 diabetes: A prospective review. Pharmanutrition
2013;1 Suppl 4:105-14.
5. Mahapatra D, Asati V, Bharti S. ChemInform abstract: Chalcones and
their therapeutic targets for the management of diabetes: Structural and
pharmacological perspectives. Cheminform 2015;46 Suppl:15.
6. Peng C, Yang Y, Chan K, Wang C, Chen M, Huang C. Hibiscus
sabdariffa Polyphenols alleviate insulin resistance and renal epithelial to
mesenchymal transition: A novel action mechanism mediated by Type 4
dipeptidyl peptidase. J Agric Food Chem 2014;62 Suppl 40:9736-43.
7. Zhang B, Yang R, Liu CZ. Microwave assisted extraction of chlorogenic
acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol
8. Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ. Potential of
resveratrol in anticancer and anti-inflammatory therapy. Nutritrion
9. Elíes J, Cuí˜nas A, MacDougall DA, Leiro J, Campos-Toimil M.
Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial
NO synthase and reduces their interaction in vascular smooth muscle
andendothelial cells. Food Biosci 2013;1:31-8.
10. Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential
of resveratrol: Mechanistic perspectives. Cancer Lett 2008;269:243-61.
11. Brasnyo P, Molnar GA, Mohas M, Markó L, Laczy B, Cseh J, et al.
Resveratrol improves insulin sensitivity, reduces oxidative stress
and activates the akt pathway in Type 2 diabetic patients. Br J Nutr
12. Iliya I, Ali Z, Tanaka T, Iinuma M. Stilbene derivatives from Gnetum
gnemon Linn. Phytochemistry 2002;62:601-6.
13. Mun’im A, Munadhil MA, Puspitasari N, Azminah A, Yanuar A.
Angiotensin converting enzyme inhibitory activity of melinjo (Gnetum
gnemon L.) seed extracts and molecular docking of its stilbene
constituents. Asian J Pharm Clin Res 2017;10:243-8.
14. Kato E, Tokunaga Y, Sakan F. Stilbenoids isolated from seeds of
melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food
Chem 2009;2009:2544-9.
15. Hemwimon S, Pavasant P, Shotipruk A. Microwave- assisted extraction
of antioxidative anthraquinones from roots of Morinda citrifolia. Sep
Purif Technol 2007;54:44-50.
16. Xiao W, Han L, Shi B. Microwave-assisted extraction of flavonoids
from Radix Astragali. Sep Purif Technol 2008;62:614-8.
17. Du FY, Xiao X, Li G. Application of ionic liquids in the microwaveassisted
extraction of trans-resveratrol from rhizma polygoni cuspidati.
J Chromatogr A 2007;1140:56-62.
18. Du FY, Xiao XH, Luo XJ, Li GK. Application of ionic liquids in the
microwave-assisted extraction of polyphenolic compounds from
medicinal plants. Talanta 2009;78:1177-84.
19. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo
MR, Navarro M. Intra-laboratory validation of microplate methods for
total phenolic content and antioxidant activity on polyphenolic extracts,
and comparison with conventional spectrophotometric methods. J Sci
Food Agric 2015;95 Suppl 1:204-9.
20. Ahmad I, Yanuar A, Mulia K, Mun’im A. Optimization of ionic liquidbased
microwave-assisted extraction of polyphenolic content from
Peperomia pellucida (L) Kunth using response surface methodology.
Asian Pac J Trop Biomed 2017;7 Suppl 7:660-5.
21. Souto HA, Carneiro MC, Seferin M, Senna MJH. Determination of
trans-resveratrol concentrations in Brazilian red wines by HPLC.
J Food Compos Anal 2001;14:441-5.
22. Wazir D, Ahmad S, Muse R. Antioxidant activities of different parts of
Gnetum gnemon L. J Plant Biochem Biotechnol 2011;20:234-40.
23. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F,
Mark M. (R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-
(BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor,
has a superior potency and longer duration of action compared
with other dipeptidyl peptidase-4 inhibitors. J Pharm Exp Ther
2008;325 Suppl 1:175-82.
24. Fan J, Johnson M, Lila M, Yousef G, de Mejia E. Berry and citrus
phenolic compounds inhibit dipeptidyl peptidase IV: Implications
in diabetes management. Evid Based Complementary Altern Med
25. El Meligy S, El Batch M, Abd El Alem G. Effect of resveratrol on
dipeptidyl peptidase-4 (DPP-4) and phospho enol pyruvate carboxy
kinase (PEPCK) in streptozotocin -induced diabetic rats. Researchgate
26. Borde MK, Suman RK, Mohanty IR, Deshmukh YA. Dipeptidyl
peptidase-iv inhibitory activities of medicinal plants: Terminalia
arjuna, Commiphora mukul, Gymnema sylvestre, Morinda citrifolia,
Emblica officinalis. Asian J Pharm Clin Res 2016;9:180-2.
27. Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - An
innovative and promising extraction tool for medicinal plant research.
Pharm J 2006;1 Suppl 1:2-11.
183 Views | 63 Downloads
How to Cite
Arrahman, A., Syahdi, R. R., Permatasari, H., Sari, I. F. P., & Munim, A. (2018). EFFICACY OF IONIC LIQUID [MIM]BR-BASED MAE ON RESVERATROL AND PHENOLIC COMPOUNDS EXTRACTION FROM GNETUM GNEMON SEEDS AND THEIR DPP-4 INHIBITORY ACTIVITY. International Journal of Applied Pharmaceutics, 10(1), 168-171. https://doi.org/10.22159/ijap.2018.v10s1.36
Original Article(s)