EFFICACY OF IONIC LIQUID [MIM]BR-BASED MAE ON RESVERATROL AND PHENOLIC COMPOUNDS EXTRACTION FROM GNETUM GNEMON SEEDS AND THEIR DPP-4 INHIBITORY ACTIVITY

  • Arif Arrahman Department of Pharmaceutical-Medicinal Chemistry and Bioanalysis, Faculty of Pharmacy, Universitas Indonesia, Depok 16424,
  • Rezi Riadhi Syahdi Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Hana Permatasari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Intan Fikri Purnama Sari Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
  • Abdul MunÍm Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.

Abstract

Objective: This study aimed to determine the inhibitory activity of 1-butyl-3-methylimidazolium bromide ([bmim]Br) extracts of melinjo seeds
(Gnetum gnemon) on dipeptidyl peptidase-4 (DPP-4).
Methods: Melinjo seeds were extracted by a [bmim]Br microwave-assisted method using various extraction parameters and the inhibitory activity
of DPP-4 of all extracts was determined in 96-well microplates using Cayman inhibitor screening assay. Determination of trans-resveratrol content
was conducted using a reverse-phase high-performance liquid chromatography method. The total phenolic content was determined using a 96-well
microplate reader. Data analysis for the determination of the optimal extraction conditions was developed by response surface methodology.
Results: The extract obtained from the third run showed the highest inhibition (28.73%) against DPP-4 activity with the total phenolic content of
1.96 mg gallic acid equivalent/g the seed powder.
Conclusion: The analytical results revealed the following optimal conditions: Solvent concentration 1.5 M, liquid-solid ratio 23:1, and extraction time
15 min.

Keywords: Gnetum gnemon, [bmim]Br, Trans-resveratrol, Microwave-assisted extraction, Dipeptidyl peptidase-4, Phenolic content.

References

1. World Health Organization. Definition, Diagnosis and Classification
of Diabetes Mellitus and its Complications. Part 1: Diagnosis
and Classification of Diabetes Mellitus. Geneva: Department of
Noncommunicable Disease Surveillance; 2009.
2. Geetha P, Shanmugasundharam P. Drug utilization evaluation of
antidiabetic drugs among Type 2 diabetes patients of Tamil Nadu. Asian
J Pharm Clin Res 2017;10:202-5.
3. Patel B, Ghate M. Recent approaches to medicinal chemistry and
therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur
J Med Chem 2014;74:574-605.
4. Anhê F, Desjardins Y, Pilon G, Dudonné S, Genovese M, Lajolo F, et al.
Polyphenols and Type 2 diabetes: A prospective review. Pharmanutrition
2013;1 Suppl 4:105-14.
5. Mahapatra D, Asati V, Bharti S. ChemInform abstract: Chalcones and
their therapeutic targets for the management of diabetes: Structural and
pharmacological perspectives. Cheminform 2015;46 Suppl:15.
6. Peng C, Yang Y, Chan K, Wang C, Chen M, Huang C. Hibiscus
sabdariffa Polyphenols alleviate insulin resistance and renal epithelial to
mesenchymal transition: A novel action mechanism mediated by Type 4
dipeptidyl peptidase. J Agric Food Chem 2014;62 Suppl 40:9736-43.
7. Zhang B, Yang R, Liu CZ. Microwave assisted extraction of chlorogenic
acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol
2008;62:480-3.
8. Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ. Potential of
resveratrol in anticancer and anti-inflammatory therapy. Nutritrion
2008;66:445-54.
9. Elíes J, Cuí˜nas A, MacDougall DA, Leiro J, Campos-Toimil M.
Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial
NO synthase and reduces their interaction in vascular smooth muscle
andendothelial cells. Food Biosci 2013;1:31-8.
10. Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential
of resveratrol: Mechanistic perspectives. Cancer Lett 2008;269:243-61.
11. Brasnyo P, Molnar GA, Mohas M, Markó L, Laczy B, Cseh J, et al.
Resveratrol improves insulin sensitivity, reduces oxidative stress
and activates the akt pathway in Type 2 diabetic patients. Br J Nutr
2011;20:1-7.
12. Iliya I, Ali Z, Tanaka T, Iinuma M. Stilbene derivatives from Gnetum
gnemon Linn. Phytochemistry 2002;62:601-6.
13. Mun’im A, Munadhil MA, Puspitasari N, Azminah A, Yanuar A.
Angiotensin converting enzyme inhibitory activity of melinjo (Gnetum
gnemon L.) seed extracts and molecular docking of its stilbene
constituents. Asian J Pharm Clin Res 2017;10:243-8.
14. Kato E, Tokunaga Y, Sakan F. Stilbenoids isolated from seeds of
melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food
Chem 2009;2009:2544-9.
15. Hemwimon S, Pavasant P, Shotipruk A. Microwave- assisted extraction
of antioxidative anthraquinones from roots of Morinda citrifolia. Sep
Purif Technol 2007;54:44-50.
16. Xiao W, Han L, Shi B. Microwave-assisted extraction of flavonoids
from Radix Astragali. Sep Purif Technol 2008;62:614-8.
17. Du FY, Xiao X, Li G. Application of ionic liquids in the microwaveassisted
extraction of trans-resveratrol from rhizma polygoni cuspidati.
J Chromatogr A 2007;1140:56-62.
18. Du FY, Xiao XH, Luo XJ, Li GK. Application of ionic liquids in the
microwave-assisted extraction of polyphenolic compounds from
medicinal plants. Talanta 2009;78:1177-84.
19. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo
MR, Navarro M. Intra-laboratory validation of microplate methods for
total phenolic content and antioxidant activity on polyphenolic extracts,
and comparison with conventional spectrophotometric methods. J Sci
Food Agric 2015;95 Suppl 1:204-9.
20. Ahmad I, Yanuar A, Mulia K, Mun’im A. Optimization of ionic liquidbased
microwave-assisted extraction of polyphenolic content from
Peperomia pellucida (L) Kunth using response surface methodology.
Asian Pac J Trop Biomed 2017;7 Suppl 7:660-5.
21. Souto HA, Carneiro MC, Seferin M, Senna MJH. Determination of
trans-resveratrol concentrations in Brazilian red wines by HPLC.
J Food Compos Anal 2001;14:441-5.
22. Wazir D, Ahmad S, Muse R. Antioxidant activities of different parts of
Gnetum gnemon L. J Plant Biochem Biotechnol 2011;20:234-40.
23. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F,
Mark M. (R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-
1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione
(BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor,
has a superior potency and longer duration of action compared
with other dipeptidyl peptidase-4 inhibitors. J Pharm Exp Ther
2008;325 Suppl 1:175-82.
24. Fan J, Johnson M, Lila M, Yousef G, de Mejia E. Berry and citrus
phenolic compounds inhibit dipeptidyl peptidase IV: Implications
in diabetes management. Evid Based Complementary Altern Med
2013;2013:1-13.
25. El Meligy S, El Batch M, Abd El Alem G. Effect of resveratrol on
dipeptidyl peptidase-4 (DPP-4) and phospho enol pyruvate carboxy
kinase (PEPCK) in streptozotocin -induced diabetic rats. Researchgate
2011;3:1-14.
26. Borde MK, Suman RK, Mohanty IR, Deshmukh YA. Dipeptidyl
peptidase-iv inhibitory activities of medicinal plants: Terminalia
arjuna, Commiphora mukul, Gymnema sylvestre, Morinda citrifolia,
Emblica officinalis. Asian J Pharm Clin Res 2016;9:180-2.
27. Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction - An
innovative and promising extraction tool for medicinal plant research.
Pharm J 2006;1 Suppl 1:2-11.
Statistics
84 Views | 75 Downloads
Citatons
How to Cite
Arrahman, A., Syahdi, R. R., Permatasari, H., Sari, I. F. P., & MunÍmA. (2018). EFFICACY OF IONIC LIQUID [MIM]BR-BASED MAE ON RESVERATROL AND PHENOLIC COMPOUNDS EXTRACTION FROM GNETUM GNEMON SEEDS AND THEIR DPP-4 INHIBITORY ACTIVITY. International Journal of Applied Pharmaceutics, 10(1), 168-171. https://doi.org/10.22159/ijap.2018.v10s1.36
Section
Original Article(s)