PROCESSING PARACETAMOL-5-NITROISOPHTHALIC ACID COCRYSTAL USING SUPERCRITICAL CO2 AS AN ANTI-SOLVENT

  • RAYMOND R. TJANDRAWINATA Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk-Lapan No. 10, Tangerang 15345, Indonesia
  • STEVANUS HIENDRAWAN Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia
  • BAMBANG VERIANSYAH Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia

Abstract

Objective: A new method of cocrystallization based on the use of supercritical carbon dioxide (CO2) as an anti-solvent was explored. In the present study, we investigate and analyze paracetamol (PCA)-5-nitroisophthalic acid (5NIP) cocrystal produced using supercritical anti-solvent (SAS) process.


Methods: PCA-5NIP cocrystals prepared by SAS cocrystallization were compared to those produced using traditional solvent evaporation by rapid evaporation (RE) process. The cocrystals produced were characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), Fourier Transform Infrared (FTIR) spectroscopy, particle size analysis and scanning electron microscopy (SEM).


Results: The products obtained from SAS and RE process exhibited identical PXRD spectra and were distinguishable from the individual compounds, indicating the formation of a new phase. DSC analysis revealed that PCA-5NIP cocrystals from each method possess similar melting point which lies between the melting points of the parent compounds. Cocrystal particles with a mean diameter of 4.66 µm were produced from SAS process, which was smaller than those produced by traditional solvent evaporation method with a mean diameter of 38.09 μm.


Conclusion: This study demonstrates the ability of SAS process to produce the submicron size of PCA-5NIP cocrystal with altered physicochemical properties in a single step process.

Keywords: 5-nitroisophthalic acid, Carbon dioxide, Cocrystal, Paracetamol, Supercritical anti-solvent

References

1. Hiendrawan S, Hartanti AW, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Solubility enhancement of ketoconazole via salt and cocrystal formation. Int J Pharm Pharm Sci 2015;7:160-4.
2. Alatas F, Ratih H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int J Pharm Pharm Sci 2015;7:423-6.
3. Fukte SR, Wagh MP, Rawat S. Coformer selection: an important tool in cocrystal formation. Int J Pharm Pharm Sci 2014;6:9-14.
4. Hiendrawan S, Veriansyah B, Tjandrawinata RR. Solid-state properties and solubility studies of a novel pharmaceutical cocrystal of Itraconazole. Int J Appl Pharm 2018;10:97-104.
5. Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm 2016;497:106-13.
6. Putra OD, Umeda D, Nugraha YP, Nango K, Yonemochi E, Uekusa H. Simultaneous improvement of epalrestat photostability and solubility via cocrystallization: a case study. Cryst Growth Des 2018;18:373-9.
7. Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun 2016;52:8342-60.
8. Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007;4:301-9.
9. Reflection paper on the use of cocrystals and other solid-state forms of active substances in medicinal products. European Medicines Agency. Available from: http://www.ema.europa.eu/ docs/en_GB/document_library/Scientific_guideline/2015/07/WC500189927.pdf. [Last accessed on 23 May 2019].
10. Guidance for industry: regulatory classification of pharmaceutical co-crystals. US Food and Drug Administration. Available from: https://www.fda.gov/downloads/Drugs/ Guidances/UCM281764.pdf. [Last accessed on 23 May 2019].
11. Fucke K, Myz SA, Shakhtshneider TP, Boldyreva EV, Griesser UJ. How good are the crystallisation methods for co-crystals? A comparative study of piroxicam. New J Chem 2012;36:1969-77.
12. Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystalization. Cryst Growth Des 2008;88:3032-7.
13. Chen JM, Wang ZZ, Wu CB, Li S, Lu TB. Crystal engineering approach to improve the solubility of mebendazole. Cryst Eng Comm 2012;14:6221-9.
14. Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top Curr Chem 2005;254:41-70.
15. Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta 2014;575:313-21.
16. Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res 2010;27:2725-33.
17. Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine: nicotinamide cocrystals by spray drying. Eur J Pharm Sci 2014;62:251-7.
18. Eddleston MD, Patel B, Day GM, Jones W. Cocrystallization by freeze-drying: Preparation of novel multicomponent crystal forms. Cryst Growth Des 2013;13:4599-606.
19. Pando C, Cabanas A, Cuadra IA. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review. RSC Adv 2016;6:71134-50.
20. Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010;53:156-64.
21. Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012;13:1396-406.
22. Mullers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res 2015;32:702-13.
23. Zhao Z, Liu G, Lin Q, Jiang Y. Co-crystal of paracetamol and trimethylglycine prepared by a supercritical CO2 anti-solvent process. Chem Eng Technol 2018;41:1-11.
24. Cuadra IA, Cabanas A, Cheda JAR, Pando C. Polymorphism in the co-crystallization of the anticonvulsant drug carbamazepine and saccharin using supercritical CO2 as an anti-solvent. J Supercrit Fluids 2018;136:60-9.
25. Hiendrawan S, Veriansyah B, Tjandrawinata RR. Micronization of fenofibrate by rapid expansion of the supercritical solution. J Ind Eng Chem 2014;20:54-60.
26. Hiendrawan S, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Simultaneous micronization and purification of the bioactive fraction by supercritical antisolvent technology. J Adv Pharm Technol Res 2017;8:52-8.
27. Widjojokusumo E, Veriansyah B, Tjandrawinata RR. Supercritical anti-solvent (SAS) micronization of Manilkara kauki bioactive fraction (DLBS2347). J CO2 Util 2013;4:30-6.
28. Ober CA, Montgomery SE, Gupta RB. Formation of itraconazole/l-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol 2013;236:122-31.
29. Neurohr C, Revelli AL, Billot P, Marchivie M, Lecomte S, Laugier S, et al. Naproxen-nicotinamide cocrystals produced by CO2 antisolvent. J Supercrit Fluids 2013;83:78-85.
30. Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Simultaneous cocrystallization and micronization of paracetamol-dipicolinic acid cocrystal by supercritical antisolvent (SAS). Int J Pharm Pharm Sci 2016;8:89-98.
31. Kim MS, Lee S, Park JS, Woo JS, Hwang SJ. Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. Powder Technol 2007;177:64-70.
32. Lu E, Hornedo NR, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm 2008;10:665-8.
33. Perlovich GL. Thermodynamic characteristics of cocrystal formation and melting points for the rational design of pharmaceutical two-component systems. Cryst Eng Comm 2015;17:7019-28.
34. Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des 2015;15:1173-9.
35. Yeo SD, Lee JC. Crystallization of sulfamethizole using the supercritical and liquid antisolvent processes. J Supercrit Fluids 2004;30:315-23.
36. Chadha R, Saini A, Jain DS, Venugopalan P. Preparation and solid-state characterization of three novel multicomponent solid forms of oxcarbazepine: Improvement in solubility through saccharin cocrystal. Cryst Growth Des 2012;12:4211-24.
37. Chow SF, Shi L, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des 2014;14:5079-89.
38. Wang L, Tan B, Zhang H, Deng Z. Pharmaceutical cocrystals of diflunisal with nicotinamide or iso-nicotinamide. Org Process Res Dev 2013;17:1413-8.
39. Garekani HA, Ford JL, Rubinstein MH, Siahboomi ARR. Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol. Int J Pharm 1999;187:77-89.
Statistics
67 Views | 29 Downloads
Citatons
How to Cite
TJANDRAWINATA, R. R., HIENDRAWAN, S., & VERIANSYAH, B. (2019). PROCESSING PARACETAMOL-5-NITROISOPHTHALIC ACID COCRYSTAL USING SUPERCRITICAL CO2 AS AN ANTI-SOLVENT. International Journal of Applied Pharmaceutics, 11(5), 194-199. https://doi.org/10.22159/ijap.2019v11i5.34554
Section
Original Article(s)