MICROFLUIDIC DEVICES AS A TOOL FOR DRUG DELIVERY AND DIAGNOSIS: A REVIEW

  • ISHA SHARMA Department of Applied Sciences and BiotechnologyShoolini University, Vill-BhajholSolan, Himachal Pradesh, India, 173229
  • MONIKA THAKUR Department of Applied Sciences and BiotechnologyShoolini University, Vill-BhajholSolan, Himachal Pradesh, India, 173229
  • SHAVETA SINGH Department of Applied Sciences and BiotechnologyShoolini University, Vill-BhajholSolan, Himachal Pradesh, India, 173229
  • ASTHA TRIPATHI Department of Applied Sciences and BiotechnologyShoolini University, Vill-BhajholSolan, Himachal Pradesh, India, 173229

Abstract

Microfluidic devices are a good example of the collaboration of chemical, biological, and engineering sciences. Microfluidic devices emerge as an in fluent technology which provides an alternative to conventional laboratory methods. These devices are employed for the precise handling and transport precise quantities of drugs without toxicity. This system is emerging as a promising platform for designing advanced drug delivery systems and analysis of biological phenomena on miniature devices for easy diagnosis. Microfluidics enables the fabrication of drug carriers with controlled geometry and specific target sites. Microfluidic devices are also used for the diagnosis of cancer circulating tumor cells. In the current review, different microfluidic drug delivery systems and diagnostic devices have described.

Keywords: Microfluidic drug delivery system, Circulating tumor cells, Cancer diagnosis, Lab on chip

References

1. Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosen Bioelectr. 2018;117:112-28.
2. Deng G, Cassileth BR, Yeung KS. Complementary therapies for cancer-related symptoms. J Supportive Oncol. 2004;2(5):419-26.
3. Chung MJ, Chung CK, Jeong Y, Ham SS. Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr Res Pract. 2010;4:177–182.
4. Bednarz-Knoll N, Alix-Panabières C, Pantel K. Clinical relevance and biology of circulating tumor cells. Breast Cancer Res. 2011;13(6):228.
5. Perez-Gonzalez VH, Gallo-Villanueva RC, Camacho-Leon S, Gomez-Quiñones JI, Rodriguez-Delgado JM, Martinez-Chapa SO. Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection. IET Nanobiotechnol. 2016;10(5):263-75.
6. Chung AJ, Kim D, Erickson D. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab on a Chip. 2008;8(2):330-8
7. Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631-43.
8. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975.
9. Lee TY, Choi TM, Shim TS, Frijns RA, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip. 2016;16(18):3415-40.
10. Wang F, Wang H, Wang J, Wang HY, Rummel PL, Garimella SV, Lu C. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing. Biotechnol Bioeng. 2008;100(1):150-8.
11. Kwak TJ, Nam YG, Najera MA, Lee SW, Strickler JR, Chang WJ. Convex grooves in staggered herringbone mixer improve mixing efficiency of laminar flow in microchannel. PloS one. 2016;11(11):e0166068.
12. Lee TY, Choi TM, Shim TS, Frijns RA, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip. 2016;16(18):3415-40.
13. Li Y, Yamane DG, Li S, Biswas S, Reddy RK, Goettert JS, Nandakumar K, Kumar CS. Geometric optimization of liquid–liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials. Chem Eng J. 2013;217:447-59.
14. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacoth. 2019 ;109:1249-58.
15. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68.
16. Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab on a Chip. 2012;12(10):1753-67.
17. Kim S, Han SI, Park MJ, Jeon CW, Joo YD, Choi IH, Han KH. Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem. 2013;85(5):2779-86.
18. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clinical Cancer Res. 2007;13(3):920-8.
19. Kulasinghe A, Wu H, Punyadeera C, Warkiani ME. The use of microfluidic technology for cancer applications and liquid biopsy. Micromachines. 2018;9(8):397.
20. Fabbri F, Carloni S, Zoli W, Ulivi P, Gallerani G, Fici P, Chiadini E, Passardi A, Frassineti GL, Ragazzini A, Amadori D. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer letters. 2013;335(1):225-31.
21. He JH, Reboud J, Ji HM, Lee C, Long Y. Development of microfluidic device and system for breast cancer cell fluorescence detection. Journal of Vacuum Science & Technology B: Microelectr Nanometer Structures Process, Measur Phenom. 2009 26;27(3):1295-8.
22. Chung J, Reiner SH, Issadore T, Weissleder D, Lee H. Microflfluidic cell sorter (MUFCS) for on-chip capture and analysis of single cells. Adv Healthc Mater. 2012;1:432–436.
23. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, Thorban S, Nekarda H, Siewert JR. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–158.
24. Ka?u?na-Czapli?ska J, Jó?wik J. Current applications of chromatographic methods for diagnosis and identification of potential biomarkers in cancer. TrendsAnal Chem. 2014;56:1-2.
25. Chen H, Hou Y, Qi F, Zhang J, Koh K, Shen Z, Li G. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectr. 2014;61:83-7.
26. Piliarik M, Bocková M, Homola J. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectr. 2010;26(4):1656-61.
27. Sanders M, Lin Y, Wei J, Bono T, Lindquist RG. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosensors and Bioelectronics. 2014 Nov 15;61:95-101.
28. Ladd J, Taylor AD, Piliarik M, Homola J, Jiang S. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem. 2009;393(4):1157-63.
29. Li R, Feng F, Chen ZZ, Bai YF, Guo FF, Wu FY, Zhou G. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification. Talanta. 2015;140:143-9.
30. Geng Z, Kan Q, Yuan J, Chen H. A route to low-cost nanoplasmonic biosensor integrated with optofluidic-portable platform. Sens Actua B: Chem. 2014;195:682-91.
31. Zhang K, Zhao LB, Guo SS, Shi BX, Lam TL, Leung YC, Chen Y, Zhao XZ, Chan HL, Wang Y. A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectr. 2010;26(2):935-9.
32. He JH, Reboud J, Ji HM, Lee C, Long Y. Development of microfluidic device and system for breast cancer cell fluorescence detection. J Vacuum Sci Technol B: Microelectr Nanometer Structures Process Measur Phenom. 2009;27(3):1295-8.
33. Dizdar L, Fluegen G, van Dalum G, Honisch E, Neves RP, Niederacher D, Neubauer H, Fehm T, Rehders A, Krieg A, Knoefel WT. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: results from a prospective, single?center study. Molecul Oncol. 2019;13(7):1548-58.
34. Hur SC, Di Carlo D. Passive Label-Free Rare Cell Enrichment Inertial Microfludic Device Using Cell Deformability As A Biomarker. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 3-7 October 2010, Groningen, Netherlands.
35. Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450-60.
Statistics
25 Views | 13 Downloads
Citations
How to Cite
SHARMA, I., THAKUR, M., SINGH, S., & TRIPATHI, A. (2021). MICROFLUIDIC DEVICES AS A TOOL FOR DRUG DELIVERY AND DIAGNOSIS: A REVIEW. International Journal of Applied Pharmaceutics, 13(1), 95-102. https://doi.org/10.22159/ijap.2021v13i1.39032
Section
Review Article(s)