Pharmaceutical and Biopharmaceutical Aspects of Quantum Dots - An Overview

Quantum Dots - An Overview

  • SADDAM C. SHAIKH
  • SHWETA G. SABOO
  • PRASHANT S. TANDALE
  • FAHIM S. MEMON
  • SHARAD D. TAYADE
  • M. AKIFUL HAQUE
  • SHARUK L. KHAN

Abstract

Objective: In the twenty-first-century, nanotechnology has become cutting-edge technology. It is interdisciplinary and multidisciplinary, covering numerous fields such as medicine, engineering, biology, physics, material sciences, and chemistry. The present work aims to cover the optical properties, method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots (QDs). Methods: Articles were reviewed in English literature reporting the pharmaceutical and bio-pharmaceutical aspects of QDs. Results: One significant value of utilizing nanotechnology is that one can alter and control the properties in a genuinely unsurprising way to address explicit applications' issues. In science and biomedicine, the usage of functional nanomaterials has been broadly investigated and has become one of the quick-moving and stimulating research directions. Different types of nanomaterial (silicon nanowires, QDs, carbon nanotubes, nanoparticles of gold/silver) were extensively utilized for biological purposes.  Nanomedicine shows numerous advantages in the natural characteristics of targeted drug delivery and therapeutics. For instance, protection of drugs against degradation, improvement in the drug's stability, prolonged circulation time, deceased side effects, and enhanced distribution in tissues.  The present review article deals with the quantum dots, their optical properties, method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots. The review also discusses various biomedical applications of QDs. Conclusion: The QDs-based bio-nanotechnology will always be in the growing list of unique applications, with progress being made in specialized nanoparticle development, the detection of elegant conjugation methods, and the discovery of new targeting ligands.

Keywords: Quantum dots;, Optical properties;, Microwave-assisted method;, Cytotoxicity;, Cell imaging, Sentinel lymph-node mapping

References

1. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31.
2. Moreels I, Justo Y, Geyter B De, Haustraete K, Martins JC, Hens Z. Quantum Dots: A Surface Chemistry Study. ACS Nano. 2012;5:2004–12.
3. Dabbousi BO, Rodriguez-Viejo J, Mikulec F V., Heine JR, Mattoussi H, Ober R, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997;101:9463–75.
4. Maxwell T, Nogueira Campos MG, Smith S, Doomra M, Thwin Z, Santra S. Quantum dots. Nanoparticles Biomed Appl Fundam Concepts, Biol Interact Clin Appl. 2019. p. 243–65.
5. Senthil Kumar M, Valarmathi S, Bhima P, Prudhvi Devabaktuni S, Raja A, Vallabhaneni SD. Quantum dots. Int J Pharm Technol. 2012;4:1929–49.
6. Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanics of larger semiconductor clusters (“Quantum dots”). Annu Rev Phys Chem. 1990;41:477–96.
7. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014. p. 744–64.
8. Portney NG, Ozkan M. Nano-oncology: Drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 2006. p. 620–30.
9. Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 2008. p. 263–7.
10. Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39:4326–54.
11. Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007. p. 26–30.
12. Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2019. p. 44–63.
13. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017.
14. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon N Y. 2013;59:192–9.
15. Wegner KD, Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015. p. 4792–834.
16. Lee JH, Yigit M V., Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 2010. p. 592–605.
17. Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem. Rev. 2016. p. 12234–327.
18. Chinnathambi S, Chen S, Ganesan S, Hanagata N. Silicon quantum dots for biological applications. Adv. Healthc. Mater. 2014. p. 10–29.
19. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013. p. 703–18.
20. Frecker T, Bailey D, Arzeta-Ferrer X, McBride J, Rosenthal SJ. Review—Quantum Dots and Their Application in Lighting, Displays, and Biology. ECS J Solid State Sci Technol. 2016;5:R3019–31.
21. Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. 2016. p. 242–54.
22. Jinhao GAO, Hongwei GU, Bing XU. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42:1097–107.
23. Cassette E, Helle M, Bezdetnaya L, Marchal F, Dubertret B, Pons T. Design of new quantum dot materials for deep tissue infrared imaging. Adv. Drug Deliv. Rev. 2013. p. 719–31.
24. Martínez-Carmona M, Gun’Ko Y, Vallet-Regí M. Zno nanostructures for drug delivery and theranostic applications. Nanomaterials. 2018.
25. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, et al. Carbon dots: Applications in bioimaging and theranostics. Int. J. Pharm. 2019. p. 308–17.
26. Liu ML, Chen B Bin, Li CM, Huang CZ. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019. p. 449–71.
27. Delehanty JB, Mattoussi H, Medintz IL. Delivering quantum dots into cells: Strategies, progress and remaining issues. Anal. Bioanal. Chem. 2009. p. 1091–105.
28. Bilan R, Fleury F, Nabiev I, Sukhanova A. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug. Chem. 2015. p. 609–24.
29. Hild WA, Breunig M, Goepferich A. Quantum dots - Nano-sized probes for the exploration of cellular and intracellular targeting. Eur. J. Pharm. Biopharm. 2008. p. 153–68.
30. Bulte JWM, Modo MMJ. Design and applications of nanoparticles in biomedical imaging. Des. Appl. Nanoparticles Biomed. Imaging. 2016.
31. Azzazy HME, Mansour MMH, Kazmierczak SC. From diagnostics to therapy: Prospects of quantum dots. Clin. Biochem. 2007. p. 917–27.
32. Massey M, Wu M, Conroy EM, Algar WR. Mind your P’s and Q’s: The coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. Curr. Opin. Biotechnol. 2015. p. 30–40.
33. Jaleel JA, Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J. Control. Release. 2018. p. 302–21.
34. Gittard SD, Miller PR, Boehm RD, Ovsianikov A, Chichkov BN, Heiser J, et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss. 2011;149:171–85.
35. Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta. 2016. p. 519–42.
36. Ding C, Zhu A, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res. 2014;47:20–30.
37. Homan K, Mallidi S, Cooley E, Emelianov S. Combined photoacoustic and ultrasound imaging of metal nanoparticles in vivo. Nanoimaging. 2011.
38. Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C. 2016. p. 6927–45.
39. Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta. 2019. p. 456–78.
40. Bajwa N, Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of quantum dots. Artif. Cells, Nanomedicine Biotechnol. 2016. p. 758–68.
41. Dey N, Rao M. Quantum Dot: Novel Carrier for Drug Delivery. Int J Res Pharm Biomed Sci [Internet]. 2011;2:448–58. Available from: http://www.ijrpbsonline.com/files/R014.pdf
42. Mo D, Hu L, Zeng G, Chen G, Wan J, Yu Z, et al. Cadmium-containing quantum dots: properties, applications, and toxicity. Appl. Microbiol. Biotechnol. 2017. p. 2713–33.
43. Nakahara M, Ohmi T. Quantum Computing with Quantum Dots. Quantum Comput. 2008. p. 377–98.
44. Wu P, Yan XP. Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev. 2013;42:5489–521.
45. Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev. 2010;39:3031–56.
46. Gaponik N, Talapin D V., Rogach AL, Hoppe K, Shevchenko E V., Kornowski A, et al. Thiol-capping of CDTe nanocrystals: An alternative to organometallic synthetic routes. J Phys Chem B. 2002;106:7177–85.
47. Emin S, Singh SP, Han L, Satoh N, Islam A. Colloidal quantum dot solar cells. Sol Energy. 2011;85:1264–82.
48. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z. Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 2018. p. 157–85.
49. Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials. 2019.
50. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015. p. 362–81.
51. Barroso MM. Quantum dots in cell biology. J. Histochem. Cytochem. 2011. p. 237–51.
52. Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science (80- ). 2000;290:314–7.
53. Kim S, Fisher B, Eisler HJ, Bawendi M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc. 2003;125:11466–7.
54. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002. p. 40–6.
55. Moloney MP, Govan J, Loudon A, Mukhina M, Gun’ko YK. Preparation of chiral quantum dots. Nat Protoc. 2015;10:558–73.
56. Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target. 2011. p. 475–86.
57. Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, et al. Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 2015. p. 42141–61.
58. Obonyo O, Fisher E, Edwards M, Douroumis D. Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit. Rev. Biotechnol. 2010. p. 283–301.
59. Bilan R, Nabiev I, Sukhanova A. Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem. 2016. p. 2103–14.
60. Gulia S, Kakkar R. Zno quantum dots for biomedical applications. Adv. Mater. Lett. 2013. p. 876–87.
61. Liu X, Pang J, Xu F, Zhang X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci Rep. 2016;6.
62. Coe S, Woo WK, Bawendi M, Bulovi? V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002;420:800–3.
63. Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, et al. Quantum dot-induced phase stabilization of ?-CsPbI3 perovskite for high-efficiency photovoltaics. Science (80- ). 2016;354:92–5.
64. Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr. Appl. Phys. 2016. p. 1192–201.
65. Grisorio R, Debellis D, Suranna GP, Gigli G, Giansante C. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots. Angew Chemie - Int Ed. 2016;55:6628–33.
66. Seguin R, Schliwa A, Rodt S, Potschke K, Pohl UW, Bimberg D. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys Rev Lett. 2005;95.
67. Bhattacharya P, Ghosh S, Stiff-Roberts AD. Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 2004. p. 1–40.
68. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chemie - Int Ed. 2010;49:4430–4.
69. Darbandi M, Thomann R, Nann T. Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater. 2005;17:5720–5.
70. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6:5102–10.
71. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu CY. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater. 2010;22:4528–30.
72. Ahirwar S, Mallick S, Bahadur D. Electrochemical Method to Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega. 2017;2:8343–53.
73. Nann T. Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun. 2005;1735–6.
74. Tian P, Tang L, Teng KS, Lau SP. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018. p. 221–58.
75. Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater. 2009;10.
76. Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon N Y. 2011;49:3134–40.
77. Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013. p. 15673–8.
78. Park SY, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem. 2017;47:329–35.
79. He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, et al. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc. 2011;133:14192–5.
80. Sumanth Kumar D, Jai Kumar B, Mahesh HM. Quantum Nanostructures (QDs): An Overview. Synth Inorg Nanomater. 2018. p. 59–88.
81. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon N Y. 2014;68:258–64.
82. Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: Synthesis, characterization and biomedical applications. Turkish J. Pharm. Sci. 2018. p. 219–30.
83. Wang X, Feng Y, Dong P, Huang J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019.
84. Qian H, Qiu X, Li L, Ren J. Microwave-assisted aqueous synthesis: A rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. J Phys Chem B. 2006;110:9034–40.
85. Rangel-Mendez JR, Matos J, Cházaro-Ruiz LF, González-Castillo AC, Barrios-Yáñez G. Microwave-assisted synthesis of C-doped TiO 2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci. 2018;434:744–55.
86. Lehnen T, Zopes D, Mathur S. Phase-selective microwave synthesis and inkjet printing applications of Zn 2SnO 4 (ZTO) quantum dots. J Mater Chem. 2012;22:17732–6.
87. Vasudevan D, Gaddam RR, Trinchi A, Cole I. Core-shell quantum dots: Properties and applications. J. Alloys Compd. 2015. p. 395–404.
88. Wu YL, Lim CS, Fu S, Tok AIY, Lau HM, Boey FYC, et al. Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology. 2007;18.
89. Monopoli MP, Pitek AS, Lynch I, Dawson KA. Nanomaterial Interfaces in Biology. Nanomater Interfaces Biol Methods Protoc Methods Mol Biol [Internet]. 2013. p. 137155. Available from: http://link.springer.com/10.1007/978-1-62703-462-3
90. Yuan CT, Chou WC, Chuu DS, Chang WH, Lin HS, Ruaan RC. Fluorescence properties of colloidal CdSe/ZnS quantum dots with various surface modifications. J Med Biol Eng. 2006;26:131–5.
91. Krogmeier JR, Kang HG, Clarke ML, Yim P, Hwang J. Probing the dynamic fluorescence properties of single water-soluble quantum dots. Opt Commun. 2008;281:1781–8.
92. Kumar P, Kukkar D, Deep A, Sharma SC, Bharadwaj LM. Synthesis of mercaptopropionic acid stabilized CDS quantum dots for bioimaging in breast cancer. Adv Mater Lett. 2012;3:471–5.
93. Borse V, Sadawana M, Srivastava R. CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for development of biosensors. Nanophotonics VI. 2016. p. 988423.
94. Singla R, Guliani A, Kumari A, Yadav SK. Metallic nanoparticles, toxicity issues and applications in medicine. Nanoscale Mater Target Drug Deliv Theragnosis Tissue Regen. 2016. p. 41–80.
95. Dobhal G, Garima. Quantum dot bioconjugates for the detection of extracellular vesicles in saliva and breath. MSc Thesis. 2019;
96. Tian B, Al-Jamal WT, Stuart M, Kostarelos K. Doxorubicin-loaded and antibody-conjugated liposome-QD hybrid vesicles for targeted cancer therapy and imaging. Nanotechnol 2010 Bio Sensors, Instruments, Medical, Environ Energy - Tech Proc 2010 NSTI Nanotechnol Conf Expo, NSTI-Nanotech 2010. 2010. p. 380–1.
97. Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018.
98. Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A. 2005;102:7583–8.
99. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, et al. Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc. 2008;130:1274–84.
100. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008. p. 1226–40.
101. Ghasemi Y, Peymani P, Afifi S. Quantum dot: Magic nanoparticle for imaging, detection and targeting. Acta Biomed l’Ateneo Parm. 2009;80:156–65.
102. Kim D, Kim DH, Lee JH, Grossman JC. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys Rev Lett. 2013;110.
103. Rhyner MN, Smith AM, Goo X, Mao H, Yang L, Nie S. Quantum dots and multifunctional nanoparticles: New contrast agents for tumor imaging. Nanomedicine. 2006. p. 209–17.
104. Liu W, Hak SC, Zimmer JP, Tanaka E, Frangioni J V., Bawendi M. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J Am Chem Soc. 2007;129:14530–1.
105. Liu DS, Phipps WS, Loh KH, Howarth M, Ting AY. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells. ACS Nano. 2012;6:11080–7.
106. Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots - characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009. p. 656–73.
107. Murray CB, Kagan CR, Bawendi MG. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science (80- ). 1995;270:1335–8.
108. Mi?i? OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ. Synthesis and characterization of InP quantum dots. J Phys Chem. 1994;98:4966–9.
109. Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett. 1997;71:3406–8.
110. Knittel F, Gravel E, Cassette E, Pons T, Pillon F, Dubertret B, et al. On the characterization of the surface chemistry of quantum dots. Nano Lett. 2013;13:5075–8.
111. Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ, et al. Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J Phys Chem. 1995;99:7754–9.
112. Passaseo A. Quantum Dots Quantum Dots?: Introduction. Science (80- ). 2010;1–25.
113. Derfus AM, Chan WCW, Bhatia SN. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004;4:11–8.
114. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4:2163–9.
115. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7:1322–37.
116. Su Y, Hu M, Fan C, He Y, Li Q, Li W, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials. 2010;31:4829–34.
117. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–8.
118. Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chem. Biol. 2005. p. 1159–61.
119. Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J. Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots. Adv Healthc Mater. 2013;2:1613–9.
120. Guo G, Liu W, Liang J, He Z, Xu H, Yang X. Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett. 2007;61:1641–4.
121. Tan YF, Chandrasekharan P, Maity D, Yong CX, Chuang KH, Zhao Y, et al. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials. 2011;32:2969–78.
122. Liu Y, Ai K, Yuan Q, Lu L. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials. 2011;32:1185–92.
123. Chen Y, Chen Z, He Y, Lin H, Sheng P, Liu C, et al. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology. 2010;21.
124. Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008. p. 1600–14.
125. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19:631–5.
126. Lagerholm BC, Wang M, Ernst LA, Ly DH, Liu H, Bruchez MP, et al. Multicolor coding of cells with cationic peptide coated quantum dots. Nano Lett. 2004;4:2019–22.
127. Li J, Zhao XW, Zhao YJ, Gu ZZ. Quantum-dot-coated encoded silica colloidal crystals beads for multiplex coding. Chem Commun. 2009;2329–31.
128. Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland JA, Byers RJ. Quantum dots light up pathology. J. Pathol. 2008. p. 275–85.
129. Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem. 2008;80:8649–55.
130. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small. 2015.
131. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small. 2008;4:455–8.
132. Kagan CR, Murray CB, Nirmal M, Bawendi MG. Electronic energy transfer in CdSe Quantum dot solids. Phys Rev Lett. 1996;76:1517–20.
133. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, et al. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012.
134. Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1:2116–27.
135. Bakker MA, Mehl S, Hiltunen T, Harju A, Divincenzo DP. Validity of the single-particle description and charge noise resilience for multielectron quantum dots. Phys Rev B - Condens Matter Mater Phys. 2015;91.
136. Choi YE, Kwak JW, Park JW. Nanotechnology for early cancer detection. Sensors. 2010. p. 428–55.
137. Walling MA, Novak JA, Shepard JRE. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009. p. 441–91.
138. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron. 2014;
139. Obliosca JM, Liu C, Batson RA, Babin MC, Werner JH, Yeh HC. DNA/RNA detection using DNA-templated few-atom silver nanoclusters. Biosensors. 2013.
140. Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, et al. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces. 2014;
141. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol. 2011;
142. Kim SS, Ye C, Kumar P, Chiu I, Subramanya S, Wu H, et al. Targeted delivery of sirna to macrophages for anti-inflammatory treatment. Mol Ther. 2010;18:993–1001.
143. Bonoiu A, Mahajan SD, Ye L, Kumar R, Ding H, Yong KT, et al. MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res. 2009;1282:142–55.
144. Bruun J, Larsen TB, Jølck RI, Eliasen R, Holm R, Gjetting T, et al. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood–brain barrier and glioma cells. Int J Nanomedicine. 2015;10:5995–6008.
145. Lin G, Chen T, Zou J, Wang Y, Wang X, Li J, et al. Quantum dots-siRNA nanoplexes for gene silencing in central nervous system tumor cells. Front Pharmacol. 2017;8.
146. Djikanovi? D, Kalauzi A, Jeremi? M, Xu J, Mi?i? M, Whyte JD, et al. Interaction of the CdSe quantum dots with plant cell walls. Colloids Surfaces B Biointerfaces. 2012;91:41–7.
147. Wang J, Yang Y, Zhu H, Braam J, Schnoor JL, Alvarez PJJ. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environ Sci Technol. 2014;48:6754–62.
148. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, et al. Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecol Eng. 2014;70:114–23.
149. Wang Q, Chen J, Zhang H, Lu M, Qiu D, Wen Y, et al. Synthesis of water soluble quantum dots for monitoring Carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol. 2011. p. 2208–14.
150. Dong X, Liang W, Meziani MJ, Sun YP, Yang L. Carbon dots as potent antimicrobial agents. Theranostics. 2020. p. 671–86.
151. Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir. 2008;24:5445–52.
152. Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35:4428–35.
153. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.
154. Frangioni J V., Kim SW, Ohnishi S, Kim S, Bawendi MG. Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol. 2007;374:147–59.
155. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, et al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano. 2010;4:2531–8.
156. Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn. 2006. p. 231–44.
157. Shao L, Gao Y, Yan F. Semiconductor quantum dots for Biomedicial applications. Sensors. 2011. p. 11736–51.
158. Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, et al. Quantum dots in cancer therapy. Expert Opin. Drug Deliv. 2012. p. 47–58.
159. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007. p. 257–88.
160. Wagner MK, Li F, Li J, Li XF, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal. Bioanal. Chem. 2010. p. 3213–24.
161. Nida DL, Rahman MS, Carlson KD, Richards-Kortum R, Follen M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol. 2005.
162. Iga AM, Robertson JHP, Winslet MC, Seifalian AM. Clinical potential of quantum dots. J. Biomed. Biotechnol. 2007.
163. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL. Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol. 2003;69:4205–13.
164. Liang J, Huang S, Zeng D, He Z, Ji X, Ai X, et al. CdSe quantum dots as luminescent probes for spironolactone determination. Talanta. 2006;69:126–30.
Statistics
32 Views | Downloads
Citations
How to Cite
C. SHAIKH, S., G. SABOO, S., S. TANDALE, P., S. MEMON, F., D. TAYADE, S., HAQUE, M. A., & L. KHAN, S. (2021). Pharmaceutical and Biopharmaceutical Aspects of Quantum Dots - An Overview: Quantum Dots - An Overview. International Journal of Applied Pharmaceutics, 13(4). https://doi.org/10.22159/ijap.2021v13i4.41623
Section
Review Article(s)