OVERVIEW OF MITOXANTRONE - A POTENTIAL CANDIDATE FOR TREATMENT OF BREAST CANCER

Authors

  • PREETHI S. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
  • HITESH KUMAR Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
  • VISHAL B. RAWAL Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India https://orcid.org/0000-0003-3159-0923
  • RAMKISHAN AJMEER Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
  • VIKAS JAIN Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43474

Keywords:

Keywords: Breast cancer, Anthraquinone, Mitoxantrone, Nano formulation, Multiple Drug resistance

Abstract

Anthraquinones are one of the popular classes of aromatic compounds which possess potential anticancer properties, by suppressing the nucleic acid formation and proteins essential to the survival of cancerous cells. Mitoxantrone (MT) is an antibiotic and antineoplastic agent belonging to the anthracycline class of compounds which exhibit minimal incident of drug resistance. It is a synthetic anticancer drug, bound to enzyme topoisomerase IIα inhibitor, and intercalates DNA topoisomerase IIα, preventing re-ligations in DNA strands fragmentation and disruption of DNA repair. The expression of this enzyme was used tumor cells marker because of its key function in cell proliferation. The cleavable complex of topoisomerase IIα is hypothesized to damage the DNA and may enhance apoptosis in tumor cell proliferation. The susceptibility of cells to mitoxantrone is associated with cell topoisomerase II α protein and lowered resistance in breast cancer line cell lines to topoisomerase IIα inhibitors. MT is an ABC-transporter in breast cancer, also designated to be associated with “Breast cancer resistance protein” (BCRP) and it is also a cell cycle non-specific anti-cancer drug and P-glycoprotein substrate. Multiple drug resistance is one of the major drawbacks of this drug which can be avoided by reducing the efflux of the drug from cancer cells by formulating drug by using the lipophilic carriers. This manuscript discusses about MT's source, chemistry, physicochemical properties, anti-cancer effects of mitoxantrone and possible pathways, Mitoxantrone targeting topoisomerase II inhibitor for cancer therapy and its mechanism, Various Nano formulation development strategy, toxicity profile, and a few patents related information.

Downloads

Download data is not yet available.

References

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

Eaton L. World cancer rates set to double by 2020. BMJ. 2003;326(7392):728.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359–86.

Dobson JM, Hohenhaus AE, Peaston AE. Cancer chemotherapy. In: Small Animal Clinical Pharmacology. Second Edi. Elsevier; 2008. p. 330–66.

Kumar A. Comprehensive review on etiopathogenesis , treatment and emerging therapies of breast cancer. 2021;14(8):20–33.

Mathew A, George PS, Arjunan A, Augustine P, Kalavathy MC, Padmakumari G, et al. Temporal trends and future prediction of breast cancer incidence across age groups in Trivandrum, South India. Asian Pacific J Cancer Prev. 2016;17(6):2895–9.

Labrèche F, Goldberg MS, Hashim D, Weiderpass E. Breast cancer. Occup Cancers. 2020;417–38.

Cancer Control Opportunities in Low- and Middle-Income Countries [Internet]. Washington, D.C.: National Academies Press; 2007.

Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol. 2019;54(2):407–19.

Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S. Nobiletin as a Molecule for Formulation Development: An Overview of Advanced Formulation and Nanotechnology-Based Strategies of Nobiletin. AAPS PharmSciTech. 2020 Aug 5;21(6):226.

Kharasch ED, Wendel NK, Novak RF. Anthracenedione antineoplastic agent effects on drug metabolism in Vitro and in Vivo: Relationship between structure and mechanism of inhibition. Toxicol Sci. 1987;9(1):18–25.

Al-Otaibi JS, Teesdale Spittle P, El Gogary TM. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study. J Mol Struct. 2017;1127:751–60.

Kreft D, Wang Y, Rattay M, Toensing K, Anselmetti D. Binding mechanism of anti-cancer chemotherapeutic drug mitoxantrone to DNA characterized by magnetic tweezers. J Nanobiotechnology. 2018;16(1):1–7.

Chauhan RS and SM. 9,10-Anthraquinones and other biologically active compounds from the genus Rubia,”. Chem Biodivers. 2004;1(9):1241–1264.

Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem. 2020;12(7):627–44.

Chien S-C, Wu Y-C, Chen Z-W, Yang W-C. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evidence-Based Complement Altern Med. 2015;2015:1–13.

Qing Huang Guodong Lu Han‐Ming Shen Maxey C.M. Chung Choon Nam Ong. Anti‐cancer properties of anthraquinones from rhubarb. Med Res Rev. 27(5):609–30.

Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes. Evidence-based Complement Altern Med. 2015;2015(Figure 1).

R.W. Winter, K. Cornell, L.L. Johnson, M. Ignatushchenko, D.J. Hinrichs MKR. Antimicrob. Agents Chemother. 1996. 1408–1411 p.

Marina Y. Fosso, Ka Yee Chan, Rylee Gregory and C-WTC. Library Synthesis and Antibacterial Investigation of Cationic Anthraquinone Analogs. ACS Comb Sci. 2012;14(3):231–235.

Friedman M, Xu A, Lee R, Nguyen DN, Phan TA, Hamada SM, et al. The Inhibitory Activity of Anthraquinones against Pathogenic Protozoa, Bacteria, and Fungi and the Relationship to Structure. Molecules. 2020 Jul 7;25(13):3101.

Kshirsagar AD, Panchal P V., Harle UN, Nanda RK, Shaikh HM. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents. Int J Inflam. 2014;2014:1–12.

Mellado M, Madrid A, PeñA-CortéS H, LóPez R, Jara C, Espinoza L. Antioxidant activity of anthraquinones isolated from leaves of muehlenbeckia hastulata (J.E. SM.) Johnst. (polygonaceae). J Chil Chem Soc. 2013;58(2):1767–70.

Huang Q, Lu G, Shen H-M, Chung MCM, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007 Sep;27(5):609–30.

Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020;12(11):1037–69.

Ritter JK, Chen F SY et al. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992;267(5):3257–3261.

Colbow K, Dunyluk RP. Energy transfer in photosynthesis. Int J Quantum Chem. 2009 Jun 18;10(S3):151–9.

Tarek MEl-GogaryaEman MEl-Gendy. Noncovalent attachment of psoralen derivatives with DNA: Hartree–Fock and density functional studies on the probes. Spectrochim Acta Part A Mol Biomol Spectrosc. 59(11):2635–44.

Hande KR. Topoisomerase II inhibitors. 2008;3:13–26.

Zheng Y, Zhu L FL et al. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents. Eur J Med Chem. 2017;125:902–913.

Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MAN. Anthraquinones: An Overview. Stud Nat Prod Chem. 2018;58:313–38.

DeVita Jr. V, Rosenberg SA, Hellman S. DeVita - Cancer : Principles and Practice of Oncology. 2001;(July).

Feofanov A., Sharonov S., Fleury F., Kudelina I. et al, Feofanov A, Sharonov S, Fleury F, Kudelina I, Nabiev I. Quantitative confocal spectral imaging analysis of mitoxantrone within living K562 cells: Intracellular accumulation and distribution of monomers, aggregates, naphtoquinoxaline metabolite, and drug-target complexes. Biophys J. 1997;73(6):3328–36.

Lorna De Leoz MA, Chua MT, Ann Endoma-Arias MA, Concepcion GP, Cruz LJ, Leoz MLA De, et al. A Modified Procedure for the Preparation of Mitoxantrone. Philipp J Sci. 2006;135(2):83–92.

Von Hoff. D.D.: Coltman. C.A.; Forseth B. Activity of mitoxantrone in a human tumour clonogenic system. Cancer Res. 1981;41:1853–5.

Neidhart BJA, Gochnour D, Roach R, Hoth D, Young D, Neidhart JA, et al. A comparison of mitoxantrone and doxorubicin in breast cancer. J Clin Oncol. 1986;4(5):672–7.

Zee-Cheng RK CC, Cheng CC and Zee-Cheng RKY. Antineoplastic agents. Structure-activity relationship study of bis(substituted aminoalkylamino)anthraquinones. J Med Chem. 1978;21(3).

YAP H-Y, Yap it-Y, Blumenshcin GR, Schell FC, Buzdar A, Valdivieso M BG. Dihydroxyanthracenedione: A Promising New Drug in the Treatment of Metastatic Breast Cancer. Ann Intern Med. 1981 Dec 1;95(6):694.

Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine. 2016;11:4077–91.

Smith IE, Stuart-Harris R, Pavlidis N, Bozek T. Mitoxantrone (novantrone*) as single agent and in combination chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rev. 1983;10(SUPPL. B):37–40.

Neidhart JA, Gochnour D, Roach RW, Steinberg JA, Young D. Mitoxantrone versus doxorubicin in advanced breast cancer: A randomized cross-over trial. Cancer Treat Rev. 1983;10(SUPPL. B):41–6.

Brufman G, Haim N, Ben-Baruch N, Sulkes A. Second-line chemotherapy with mitoxantrone as a single agent in metastatic breast cancer. J Chemother. 1993;5(1):43–6.

Montazerabadi A-RR, Sazgarnia A, Bahreyni-Toosi MH, Ahmadi A, Shakeri-Zadeh A, Aledavood A. Mitoxantrone as a prospective photosensitizer for photodynamic therapy of breast cancer. Photodiagnosis Photodyn Ther. 2012 Mar;9(1):46–51.

Carter KA, Wang S, Geng J, Luo D, Shao S, Lovell JF. Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin–Phospholipid Liposomes. Mol Pharm. 2016 Feb;13(2):420–7.

Jain V, Kumar H, Anod H V, Chand P, Gupta NV, Dey S. Review article A review of nanotechnology-based approaches for breast cancer and triple- negative breast cancer. J Control Release. 2020;326(April):1–20.

Bowden GT, Peng Y-M AD. Comparative molecular pharmacology of the anthracene anticancer drugs bisantrene and mitoxantrone. Proc Am Assoc CANCER Res. 1984;25(March):296.

Chand P, Kumar H, Badduri N, Gupta NV, Bettada VG, Madhunapantula S V., et al. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surfaces B Biointerfaces. 2021 Mar;199:111535.

2. Cornbleet MA, Stuart-Harris RC, Smith IE, Coleman RE, Rubens RD, McDonald M, Mouridsen HT, Rainer H, vanOosterom AT SJ. Mitoxantrone for the treatment of advanced breast cancer: Single-agent therapy in previously untreated patients. Eur J Cancer Clin Oncol. 1984;20(9):1141–1146.

Tao X, Tao T, Wen Y, Yi J, He L, Huang Z, et al. Novel Delivery of Mitoxantrone with Hydrophobically Modified Pullulan Nanoparticles to Inhibit Bladder Cancer Cell and the Effect of Nano-drug Size on Inhibition Efficiency. 2018;

CarmenAvendaño JCC, Avendaño C, Menéndez JC, CarmenAvendaño JCC, Avendaño C, Menéndez JC. Anticancer Drugs Acting via Radical Species. Vol. 20, Medicinal Chemistry of Anticancer Drugs. 2015. 133–195 p.

Cheng CC. Prog Med Chem. 1983. 20–83 p.

Adamson RH. Cancer Chemother Rep. 1974. 293 p.

Durr FE. Biochemical pharmacology and tumor biology of mitoxantrone and ametantrone. In: Lown JW, Eds Anthracycline and Anthracenedione-Based Anticancer Agents. Amsterdam, The Netherlands; 1988. p. 163–200.

Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.

Mitoxantrone Injection Product Monograph. Novopharm Limited.

Rose BD editor. Mitoxantrone. UpToDate 15.3 ed. Waltham, Massachusetts: UpToDate®; 2008.

Richmond Hill O. Mitoxantrone Injection Package Insert. Pharmaceutical Partners of Canada.

Et CM. Mitoxantrone (Novantrone) Drugs.com.

Saint-Laurent Q. Mitoxantrone Injection, USP Product Monograph. Hospira Healthcare Corporation.

Stuart-Harris RC SI. : Mitoxantrone: a phase II study in the treatment of patients with advanced breast carcinoma and other solid tumors. Cancer Chemother Pharmacol. 1982;8:179–82.

Durr fe, wallace re citarella rv. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treat Rev. 1983;10:3–11.

Niang M, Soukup T, Bukac J, Siman P, Stoklasová A, Cerman J. Chemotherapy : Open Access Biochemical and Pharmacological Effects of Mitoxantrone and Acetyl-L- Carnitine in Mice with a Solid Form of Ehrlich Tumour. 2015;5(1):1–2.

Traganos f, evenson dp, staiano-coico l, darzynkiewicz z melamed mr. Action of dihydroxyanthraquinone on cell cycle progression and survival of a variety of cultured mammalian cells. Cancer Res. 1980;40:671–81.

Huang AM LKL et al KL et al, Huang AM, Lin KW LW et al., Huang AM LKL et al KL et al. 1-Hydroxy-3-[(E)-4-(piperazine-diium)but-2-enyloxy]-9,10-anthraquinone ditrifluoroactate induced autophagic cell death in human PC3 cells. Chem Biol Interact. 2018;281:60–8.

Liu Y ZYT et al YT et al, Liu Y, Zhong Y TW et al., Liu Y ZYT et al YT et al. An autophagy-dependent cell death of MDA-MB-231 cells triggered by a novel rhein derivative 4F. Anticancer Drugs. 2019;30(10):1038–1047.

Chen H ZCH et al. CH et al., Chen H, Zhao C HR et al. Danthron suppresses autophagy and sensitizes pancreatic cancer cells to doxorubicin. Toxicol Vitr. 2019;54:345–53.

Tian W LJS et al JS et al, Tian W, Li J SZ et al, Tian W LJS et al JS et al. Novel anthraquinone compounds induce cancer cell death through paraptosis.. ACS Med Chem Lett. 2019;10(5):732–736.

Dujuan W SWQ et al. WQ et al., Dujuan W, Sumei W QL et al. SZ-685C exhibits potent anticancer activity in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol Rep. 2013;29(6):2341–2347.

Su Z LZW et al. ZW et al., Su Z, Li Z WC et al, Su Z LZW et al. ZW et al. A novel rhein derivative: activation of Rac1/NADPH pathway enhances sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Cell Signal. 2018;54:35–45.

Koerner SK, Hanai JI BS et al, Koerner SK HJB et al. JB et al. Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase. Eur J Med Chem. 2017;126:920–928.

Wang Q YYZ et al. YZ et al., Wang Q, Yan Y ZJ et al. Physcion 8-O-β-glucopyranoside inhibits clear-cell renal cell carcinoma bydownregulating hexokinase II and inhibiting glycolysis. Biomed Pharmacother. 2018;104:28–35.

Huang K, Jiang L LH et al, Huang K JLL et al. LL et al. Development of anthraquinone analogs as phosphoglycerate mutase 1 inhibitors. Molecules. 2019;24(5):845.

Lown JW, Hanstock CC, Bradley RD SD, Lown JW, Hanstock CC, Bradley BD, Scraba DG, Lown JW, Hanstock CC, Bradley RD SD, et al. Interactions of the antitumor agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Mol Pharmacol. 1984;25(1):178–84.

Foye WO, Vajragupta OPA SS. DNA-binding specificity and RNA polymerase inhibitory activity of bis (aminoalkyl) anthraquinones and bis (methylthio) vinylquinolinium iodides. J Pharm Sci. 1982;71(2):253–7.

Alberts DS, Yei L, Peng M, Bowden GT, Dalton WS, Mackel C. Pharmacology of mitoxantrone : mode of action and pharmacokinetics x Section of Hematology / Oncology , Department of ’ Internal Medicine , College of Medicine , University of Arizona , Tucson , AZ , U . S . A . 2 Department of Pharmacology , College of M. 1985;107:101–7.

Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. In 2018. p. 1–20. Available from: http://link.springer.com/10.1007/978-1-4939-7459-7_1

Fry AM, Chresta CM, Davies SM, Claire Walker M, Harris AL, Hartley JA, et al. Relationship between Topoisomerase II Level and Chemosensitivity in Human Tumor Cell Lines. Cancer Res. 1991;51(24):6592–5.

Sissi C, Palumbo M. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res. 2009 Feb 1;37(3):702–11.

Hsiang YH, Liu LF. DNA topoisomerase poisons as antitumor drugs. Cancer Chemother challenges Futur Proc Fourth Nagoya Int Symp cancer Treat ICS904. 1989;305–11.

Depowski PL, Rosenthal SI, Brien TP, Stylos S, Johnson RL, Ross JS. Topoisomerase IIα expression in breast cancer: Correlation with outcome variables. Mod Pathol. 2000;13(5):542–7.

Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B. 2018 Oct;8(6):844–61.

Abu Saleh M, Solayman M, Hoque MM, Khan MAK, Sarwar MG, Halim MA. Inhibition of DNA Topoisomerase Type II α (TOP2A) by Mitoxantrone and Its Halogenated Derivatives: A Combined Density Functional and Molecular Docking Study. Biomed Res Int. 2016;2016.

Hevener KE, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B. 2018;8(6):844–61.

Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009 May 20;9(5):338–50.

Pommier Y, Leo E, Zhang H, Marchand C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem Biol. 2010 May;17(5):421–33.

Ali JA, Jackson AP, Howells AJ, Maxwell A. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry . 1993 Mar 16;32(10):2717–24.

Bisacchi GS, Manchester JI. A New-Class Antibacterial—Almost. Lessons in Drug Discovery and Development: A Critical Analysis of More than 50 Years of Effort toward ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. ACS Infect Dis. 2015 Jan 9;1(1):4–41.

Lindsey RH, Pendleton M, Ashley RE, Mercer SL, Deweese JE, Osheroff N. Catalytic Core of Human Topoisomerase IIα: Insights into Enzyme–DNA Interactions and Drug Mechanism. Biochemistry. 2014 Oct 21;53(41):6595–602.

Gibson EG, Deweese JE. Covalent poisons of topoisomerase II. Curr Top Pharmacol. 2013;17(1):1–12.

Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 2009 Feb 1;37(3):738–48.

Roca J, Wang JC. DNA transport by a type II DNA topoisomerase: Evidence in favor of a two-gate mechanism. Cell. 1994 May;77(4):609–16.

Maxwell A, Lawson D. The ATP-Binding Site of Type II Topoisomerases as a Target for Antibacterial Drugs. Curr Top Med Chem [Internet]. 2003 Jan 1;3(3):283–303.

Chène P, Rudloff J, Schoepfer J, Furet P, Meier P, Qian Z, et al. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem Biol. 2009 Dec 7;9(1):1.

Roboz J, Richardson CL HJ et al. Comparison of the interaction of antineoplastic aminoanthraquinone analogs with DNA using competitive fluorescence polarization. Life Sci. 1982;31(1):25–30.

Faulds D, Balfour JA, Chrisp P LH et al. Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs. 1991;41(3):400–449.

Leslie Z. Benet, Fabio Broccatelli TIO et al. BDDCS Applied to Over 900 Drugs. AAPS J. 13(4):519–547.

Wu C-Y BL. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

Zhang P, Ling G, Pan X et al, Zhang P, Ling G, Pan X, Sun J, Zhang T, et al. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine Nanotechnology, Biol Med . 2012;8(2):185–93.

Mussi SV, Silva RC, Oliveira MC et al. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci. 2013;48(1–2):282–90.

Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target. 2013 Jul 14;21(6):581–92.

Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U. Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr Pharm Des. 2018 Jan 30;23(35).

Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–8.

Jain V, Kumar H, Chand P, Jain S, S P. Lipid‐Based Nanocarriers as Drug Delivery System and Its Applications. In: Nanopharmaceutical Advanced Delivery Systems. Wiley; 2021. p. 1–29.

Doughty JC, Kane E, Cooke TG et al. Mitoxantrone and methotrexate chemotherapy with and without mitomycin C in the regional treatment of locally advanced breast cancer. Breast. 2002;11:97–9.

Hagemeister F, Cabanillas F, Coleman M et al. The role of mitoxantrone in the treatment of indolent lymphomas. Oncologist. 2005;10:150–9.

Von Hoff DD, Pollard E, Kuhn J, Murray E, Coltman CA. Phase I clinical investigation of 1,4-dihydroxy-5,8-bis (( (2-[(2-hydroxyethyl)amino]ethyl) amino))-9,10-anthracenedione dihydrochloride (NSC 301739), a new anthracenedione. Cancer Res. 1980 May;40(5):1516–8.

Shenkenberg Td, Von Hoff DD. Mitoxantrone: A New Anticancer Drug with Significant Clinical Activity. Ann Intern Med. 1986 Jul 1;105(1):67.

Lalhlenmawia H. Original Article Formulation and in vitro evaluation of poly- ( d , l-lactide-co-glycolide ) ( plga ) nanoparticles of ellagic acid and its effect on human breast cancer , mcf-7. 2021;13(5).

Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol. 2020 Dec;60:102021.

Du Q, Chen H. The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chem. 2010;119(2):567–72.

Lu B, Xiong S Bin, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1–2):86–95.

Li Z, Cai Y, Zhao Y, Yu H, Zhou H, Chen M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int J Nanomedicine. 2017;12:6595–604.

Lam P, Lin RD, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. 2018;

Lu B, Xiong S, Yang H, Yin X, Chao R. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. 2006;8:86–95.

Ho D, Chow EK. Nanodiamond − Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells. 2014;

Ling G, Zhang T, Zhang P, Sun J, He Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm. 2016;42(8):1351–9.

Zhang LK, Hou SX, Zhang JQ, Hu WJ, Wang CY. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Arch Pharm Res. 2010;33(8):1193–8.

Sargazi A, Kamali N, Shiri F, Heidari Majd M. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artif Cells, Nanomedicine Biotechnol. 2018;46(3):500–9.

Wang C, Han M. Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and effective cancer therapy. 2019;1503–17.

Yoon J-H, Cho H-J, Jin H-E, Maeng H-J. Mitoxantrone-Loaded PEGylated Gold Nanocomplexes for Cancer Therapy. J Nanosci Nanotechnol. 2018;19(2):687–90.

Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, et al. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683–91.

Development D, Pharmacy I. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydro- chloride to enhance anticancer activity bypassing the BCRP-mediated efflux. 2015;

Robin C. Stuart-Harris, Thomas Bozek, Nicholas A. Pavlidis and IES et al. Mitoxantrone: An active new agent in the treatment advanced breast cancer. Cancer Chemother Pharmacol. 1984;12:1–4.

A. M. Hendrick ALH& BMJC et al. Verapamil with mitoxantrone for advanced ovarian cancer: A negative phase II trial. Ann ofOncology. 1991;2:71–2.

Dunn CJ GK. Mitoxantrone: A review of its pharmacological properties and use in acute nonlymphoblastic leukaemia. Drugs Aging. 1996;9(2):122–147.

MA. W. Treatment of adult patients with relapsed or refractory acute lymphoblastic leukemia (ALL). Leukemia. 1997;11(4):S28–S30.

Tallman MS, Gilliland DG RJ. Drug therapy for acute myeloid leukemia. Blood. 2005;106(4):1154–1163.

Giuseppe Comella, Rossana Casaretti, Pasquale Comella, Antonio Daponte AP et al. Treatment of Advanced Colorectal Cancer With Mitoxantrone, High Dose Folinic Acid And Fluorouracil. Tumori. 1991;77:445–6.

Fusi A, Procopio G, Della Torre S, Ricotta R, Bianchini G, Salvioni R, Ferrari L, Martinetti A, Savelli G, Villa S BE. Treatment options in hormone-refractory metastatic prostate carcinoma. Tumori. 2004;90(6):535–546.

Hu OY-P, Chang S-P, Song Y-B, Chen K-Y, Law C-K. Novel assay method for mitoxantrone in plasma, and its application in cancer patients. J Chromatogr B Biomed Sci Appl. 1990 Jan;532:337–50.

Patel KJ, Trédan O, Tannock IF. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother Pharmacol. 2013;72(1):127–38.

Panousis C, Kettle AJ, Phillips DR. Neutrophil-mediated activation of mitoxantrone to metabolites which form adducts with DNA. Cancer Lett. 1997;113(1–2):173–8.

Stuart-Harris RC, Smith IE. Mitoxantrone: A phase II study in the treatment of patients with advanced breast carcinoma and other solid tumours. Cancer Chemother Pharmacol. 1982;8(2):179–82.

Ehlllllger G, Schiller C, Proksch B, Zeller K, Blaf J. Dnoa 01 .... 1_. 1990;

Smyth JF, Macpherson JS, Warrington PS, Leonard RCF, Wolf CR. The clinical pharmacology of mitozantrone. Cancer Chemother Pharmacol. 1986;17(2):149–52.

Richard B, Fabre G, De Sousa G, Fabre I, Rahmani R, Cano JP. Interspecies variability in mitoxantrone metabolism using primary cultures of hepatocytes isolated from rat, rabbit and humans. Biochem Pharmacol. 1991;41(2):255–62.

Alberts, D. S., Peng, Y. M., Leigh, S., Davis, T. P., and Woodward DL. Disposition of mitoxanlrone in patients. Cancer Treal Rev. 1983;23–7.

Chiccarelli, F. S., Morrison, J. A., Cosulich, D. B., Perkinson, N. A., Ridge, D. N., Sum, F. W., Murdock, K. C, Woodward, D. L., and Arnold ET. Identification of human urinary mitoxantrone metabolites. Cancer Res. 1986;46:4858–61.

Richard. B.. Fabre, G., Desousa, G., and Cano JP. Metabolism of mitoxantrone by hepatocytes in primary culture isolated from different species including man. Proc Am Assoc Cancer Res. 1987;28:1674.

Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47.

Batra VK, Morrison JA, Woodward DL, Siverd NS, Yacobi A. Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metab Rev. 1986;17(3–4):311–29.

Alberts DS, Peng Y, Leigh S, Davis TP, Woodward DL. Dispositionof Mitoxantronein Cancer Patients1. 1985;1879(April):1879–84.

Kilmer PD. Review Article: Review Article. Journal Theory, Pract Crit. 2010;11(3):369–73.

Doyle LA, Yang W, Abruzzo L V, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells (mitoxantrone͞ anthracyclines͞ transporter proteins). Med Sci. 1998;95(December):15665–70.

Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res. 1999;59(1):8–13.

Zhu X, Wong ILK, Chan K-F, Cui J, Law MC, Chong TC, et al. Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors. J Med Chem. 2019 Sep 26;62(18):8578–608.

Gillet J-P, Gottesman MM. Mechanisms of Multidrug Resistance in Cancer. In 2010. p. 47–76.

Gerlach JH, Kartner N, Bell DR, Ling V. Multidrug resistance. Cancer Surv. 1986;5(1):25–46.

Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci. 1986 Jun 1;83(12):4538–42.

Endicott JA, Ling V. The Biochemistry of P-Glycoprotein-Mediated Multidrug Resistance. Annu Rev Biochem. 1989 Jun;58(1):137–71.

Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48–58.

Gottesman MM, Pastan IH. The Role of Multidrug Resistance Efflux Pumps in Cancer: Revisiting a JNCI Publication Exploring Expression of the MDR1 (P-glycoprotein) Gene. J Natl Cancer Inst. 2015 Sep 18;107(9):djv222.

Schabel FM, Skipper HE, Trader MW, Laster WR, Griswold DP, Corbett TH. Establishment of cross-resistance profiles for new agents. Cancer Treat Rep. 1983;67(10):905–22.

Biedler JL, Spengler BA. Reverse transformation of multidrug-resistant cells. Cancer Metastasis Rev. 1994;13(2):191–207.

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7(3):339–48.

Doyle LA, Yang W, Abruzzo L V., Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci. 1998 Dec 22;95(26):15665–70.

YUAN J-H, CHENG J-Q, JIANG L-Y, JI W-D, GUO L-F, LIU J-J, et al. Breast Cancer Resistance Protein Expression and 5-Fluorouracil Resistance. Biomed Environ Sci. 2008 Aug;21(4):290–5.

Austin Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003 Oct 23;22(47):7340–58.

Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012 Apr;83(8):1084–103.

Diah SK, Smitherman PK, Aldridge J, Volk EL, Schneider E, Townsend AJ, et al. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: Evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res. 2001;61(14):5461–7.

Hu J, Zhang H, Liu L, Han B, Zhou G, Su P. TRPS1 Confers Multidrug Resistance of Breast Cancer Cells by Regulating BCRP Expression. Front Oncol. 2020 Jun 30;10.

Bolhuis H, van Veen HW, Poolman B, Driessen AJM, Konings WN. Mechanisms of multidrug transporters. FEMS Microbiol Rev. 1997 Aug;21(1):55–84.

Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr. 2001;33(6):475–9.

Henderson BM, Dougherty WJ, James VC, Tilley LP NJ. Safety assessment of a new anticancer compound, mitoxantrone, in beagle dogs: comparison with doxorubicin. I. Clinical observations. Cancer Treat Rep. 1982;66(5):1139–43.

Each I, Agent AI, Code IATC, Saint-laurent TH, Revision P, No SC. Product monograph. 2014;(180582):1–38.

van de Wyngaert FA, Beguin C, D’Hooghe MB et al. A double-blind clinical trial of mitoxantrone versus methylprednisolone in relapsing, secondary progressive multiple sclerosis. Acta Neurol Belg. 2001;101(4):210-216.

Millefiorini E, Gasperini C, Pozzilli C, D’Andrea F, Bastianello S, Trojano M, et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis : 24-month clinical and MRI outcome. J Neurol. 1997;244(3):153–9.

Dihydroxyanthracenedione SS. DRUG NAME : Mitoxantrone. 2019;(May):1–9.

Posner LE, Dukart G, Goldberg J, Bernstein T, Cartwright K. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs. 1985;3(2):123–32.

Arlin Z, Case DC Jr, Moore J et al. Randomized multicenter trial of cytosine arabinoside with mitoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Lederle Coop Group Leuk. 1990;4(3):177–83.

Garzotto M, Myrthue A, Higano CS, Beer TM. Neoadjuvant mitoxantrone and docetaxel for high-risk localized prostate cancer. Urol Oncol Semin Orig Investig. 2006;24(3):254–9.

Smith. I.E.; Stuarl-I laris. R.; Pavlidis N. BT. Mitoxantronc (Novantronc) as a single agent and in combination chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rev. 1983;37–40.

Yang J, Shi Y, Li C, Gui L, Zhao X, Liu P, et al. Phase I clinical trial of pegylated liposomal mitoxantrone plm60-s: Pharmacokinetics, toxicity and preliminary efficacy. Cancer Chemother Pharmacol. 2014;74(3):637–46.

Bezwoda WR, Dansey R, Seymour L. First-Line Chemotherapy of Advanced Breast Cancer with Mitoxantrone , Cyclophosphamide and Vincristine 1. 1989;208–11.

[CA] bally marcel b [ca]; barber lana w [ca]; chang charmaine w [ca]; lim howard j [ca]; madden thomas d. Liposomal formulations of mitoxantrone. 1999.

Wei J sun [CN]; mingxing, Mingxing S juan; wei. Mitoxantrone sustained-release implantation agent for curing entity tumour. 2008.

MING PSSNWYZ, Classifications. Mesoporous silicon dioxide-methotrexate-mitoxantrone nanoparticles as well as preparation, activity and application thereof. 2018.

Liping hao qiang; pei jin; song. Cardiolipin-containing new liposome preparation, and its application in antitumor drugs. 2014.

Xu fei cheng; min wang; shujun wang; wen. Application of mitoxantrone as lymph tracer. 2012.

Published

15-12-2021

How to Cite

S., P., KUMAR, H., RAWAL, V. B., AJMEER, R., & JAIN, V. (2021). OVERVIEW OF MITOXANTRONE - A POTENTIAL CANDIDATE FOR TREATMENT OF BREAST CANCER. International Journal of Applied Pharmaceutics, 14(2). https://doi.org/10.22159/ijap.2022v14i2.43474

Issue

Section

Review Article(s)