• VINOD KUMAR Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard, PO Hamdard Nagar 110062, New Delhi
  • BRITO RAJ S. Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, Chengalpattu District, Tamilnadu https://orcid.org/0000-0001-5987-3031
  • LAKSHMI KANAKARAJ Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, Chengalpattu District, Tamilnadu
  • DEEVAN PAUL A. Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam 603103, Chengalpattu District, Tamilnadu
  • KAVITHA K. NITTE College of Pharmaceutical Sciences, Bangaluru 560064, Karnataka
  • RAVI M. Jaya College of Paramedical Sciences, Thiruninravur, Chennai 602024
  • SUCHARITHA P. Seven Hills College of Pharmacy, Chittoor, Tirupati 517561, Andhra Pradesh




Aptamer, SELEX, Biosensors, Novel drug delivery system, Nanoparticle, Diagnosis


In recent year, Aptamer has been one of the key tools in the field of advanced drug delivery systems. Aptamer are oligonucleotides or peptides that bind to a specific target molecule. In this review we summarize the major differences between the antibody and an Aptamer along with the different methodology of the In vitro selection of the Aptamer by using SELEX (Systematic evolution of ligands by exponential enrichment) technique. SELEX is a technique which has a based biosensor and some of the novel drug delivery system. The article referred in this review was referred from the above said source was in the range of 1990-2020 y.

Primary contents is searched from science direct, springer nature, scopus indexed journals. The resources are downloaded from google scholar, peer-reviewed published literature from scientific journals and books.


Download data is not yet available.


Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012;12(1):612-31. doi: 10.3390/s120100612, PMID 22368488.

Capra JA, Paeschke K, Singh M, Zakian VA. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol. 2010;6(7):e1000861. doi: 10.1371/journal.pcbi.1000861, PMID 20676380.

Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818-22. doi: 10.1038/346818a0, PMID 1697402.

Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK, Zichi D. Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol. 2012;4(3):1-9. doi: 10.1101/cshperspect.a003582, PMID 21441582.

Gold L. A personal perspective: aptamer after 15 y. The aptamer handbook; 2006. p. 461-9.

Song Y, Song J, Wei X, Huang Mengjiao, Sun M, Zhu L, Lin B, Shen H, Zhu Z, Yang C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal Chem. 2020;92(14):9895-900. doi: 10.1021/acs.analchem.0c01394, PMID 32551560.

Krüger A, de Jesus Santos AP, de Sa V, Ulrich H, Wrenger C. Aptamer applications in emerging viral diseases. Pharmaceuticals (Basel). 2021;14(7):1-19. doi: 10.3390/ph14070622, PMID 34203242.

Yoo Hyebin, Jo H, Oh SS. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater Adv. 2020;1(8):2663-87. doi: 10.1039/D0MA00639D.

Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-10. doi: 10.1126/science.2200121, PMID 2200121.

Gopinath SCB. Methods developed for SELEX. Anal Bioanal Chem. 2007;387(1):171-82. doi: 10.1007/s00216-006-0826-2, PMID 17072603.

Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20(12):2424-34. doi: 10.1016/j.bios.2004.11.006.

Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem. 2011;415(2):175-81. doi: 10.1016/j.ab.2011.04.007, PMID 21530479.

Vianini E, Palumbo M, Gatto B. In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorg Med Chem. 2001;9(10):2543-8. doi: 10.1016/s0968-0896(01)00054-2, PMID 11557341.

Lévesque D, Beaudoin JD, Roy S, Perreault JP. In vitro selection and characterization of RNA aptamers binding thyroxine hormone. Biochem J. 2007;403(1):129-38. doi: 10.1042/BJ20061216, PMID 17163839.

Joeng CB, Niazi JH, Lee SJ, GU MB. ssDNA aptamers that recognize diclofenac and 2-anilinophenylacetic acid. Bioorg Med Chem. 2009;17(15):5380-7. doi: 10.1016/j.bmc.2009.06.044, PMID 19604698.

Mendonsa SD, Bowser MT. In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc. 2005;127(26):9382-3. doi: 10.1021/ja052406n, PMID 15984861.

Mendonsa SD, Bowser MT. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem. 2004;76(18):5387-92. doi: 10.1021/ac049857v, PMID 15362896.

Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT. Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA. 2009;106(9):2989-994. doi: 10.1073/pnas.0813135106, PMID 19202068.

Huang CJ, Lin HI, Shiesh SC, Lee GB. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron. 2010;25(7):1761-6. doi: 10.1016/j.bios.2009.12.029, PMID 20061133.

Chen M, Yu Y, Jiang F, Zhou J, Li Y, Liang C, Dang L, Lu A, Zhang G. Development of cell-SELEX technology and its application in cancer diagnosis and therapy. Int J Mol Sci. 2016;17(12):1-14. doi: 10.3390/ijms17122079, PMID 27973403.

Kaur H. Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta Gen Subj. 2018;1862(10):2323-9. doi: 10.1016/j.bbagen.2018.07.029, PMID 30059712.

Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc. 2010;5(12):1993-2004. doi: 10.1038/nprot.2010.163, PMID 21127492.

Homann M, Göringer HU. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 1999;27(9):2006-14. doi: 10.1093/nar/27.9.2006, PMID 10198434.

Homann M, Goringer HU. Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest a therapeutic “piggy-back” approach. Bioorg Med Chem. 2001;9(10):2571-80. doi: 10.1016/s0968-0896(01)00032-3, PMID 11557345.

Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8(10):1940-9. doi: 10.1038/nprot.2013.125, PMID 24030442.

Zumrut HE, Ara MN, Fraile M, Maio G, Mallikaratchy P. Ligand-guided selection of target-specific aptamers: a screening technology for identifying specific aptamers against cell-surface proteins. Nucleic Acid Ther. 2016;26(3):190-8. doi: 10.1089/nat.2016.0611. PMID 27148897.

Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem. 2001;276(52):48644-54. doi: 10.1074/jbc.M104651200, PMID 11590140.

Guthold M, Cubicciotti R, Superfine R, Taylor RM. Novel methodology to detect, isolate, amplify and characterize single aptamer molecules with desirable target-binding properties. Biophys J. 2002;82:797.

Khati M, Schuman M, Ibrahim J, Sattentau Q, Gordon S, James W. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2’F-RNA aptamers. J Virol. 2003;77(23):12692-8. doi: 10.1128/jvi.77.23.12692-12698.2003, PMID 14610191.

Tsai RY, Reed RR. Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein roaz. Mol Cell Biol. 1998;18(11):6447-56. doi: 10.1128/MCB.18.11.6447, PMID 9774661.

Misono TS, Kumar PK. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem. 2005;342(2):312-7. doi: 10.1016/j.ab.2005.04.013, PMID 15913532.

Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012;12(1):612-31. doi: 10.3390/s120100612, PMID 22368488.

Numnuam A, Chumbimuni Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem. 2008;80(3):707-12. doi: 10.1021/ac701910r, PMID 18184015.

Feng K, Sun C, Kang Y, Chen J, Jiang JH, Shen GL, Yu RQ. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Commun. 2008;10:531-5.

Xu D, Xu D, Yu X, Liu Z, He W, Ma Z. Label. Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem. 2005;77(16):5107-13. doi: 10.1021/ac050192m, PMID 16097746.

Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, Fang Y. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta. 2007;598(2):242-8. doi: 10.1016/j.aca.2007.07.050, PMID 17719898.

Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem. (Palo Alto Calif). 2009;2:241-64. doi: 10.1146/annurev.anchem.1.031207.112851, PMID 20636061.

Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron. 2005;20(10):2168-72. doi: 10.1016/j.bios.2004.09.002, PMID 15741093.

Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001;123(21):4928-31. doi: 10.1021/ja0038171, PMID 11457319.

Zhao W, Chiuman W, Brook MA, Li Y. Simple and rapid colorimetric biosensors based on DNA Aptamer and noncrosslinking gold nanoparticle aggregation. Chem Bio Chem Chembiochem. 2007;8(7):727-31. doi: 10.1002/cbic.200700014, PMID 17410623.

Luzi E, Minunni M, Tombelli S, Mascini M. New trends in affinity sensing: Aptamer for ligand binding. TrAC Trends in Analytical Chemistry. 2003;22(11):810-8. doi: 10.1016/S0165-9936(03)01208-1.

Hianik T, Ostatnaa V, Zajacovaa Z, Stoikova E, Evtugyn G. Detection of Aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg Med Chem Lett. 2005;15(2):291-5. doi: 10.1016/j.bmcl.2004.10.083, PMID 15603942.

Byun J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel). 2021;11(3):1-18. doi: 10.3390/life11030193, PMID 33671039.

Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun Commun (Camb). 2010;46(2):249-51. doi: 10.1039/b916911c, PMID 20024341.

Hallahan D, Geng L, Qu S, Scarfone C, Giorgio Giorgio T, Donnelly E, Gao X, Clanton J. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell. 2003;3(1):63-74. doi: 10.1016/s1535-6108(02)00238-6, PMID 12559176.

Tang Y, Hu H, Zhang MG, Song J, Nie JL, Wang S, Niu G, Huang P, Lu G, Chen X. An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale. 2015;7(14):6304-10. doi: 10.1039/c4nr07493a, PMID 25782595.

Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010-20. doi: 10.1016/j.biomaterials.2011.07.004, PMID 21788069.

Zhao N, You J, Zeng Z, Li C, Zu Y. An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small. 2013;9(20):1-33477-84. doi: 10.1002/smll.201202694, PMID 23609964.

Zhang P, Zhao N, Zeng Z, Feng Y, Tung CH, Chang CC, Zu Y. Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells. Lab Invest. 2009;89(12):1423-32. doi: 10.1038/labinvest.2009.113, PMID 19823169.

You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano. 2010;4(2):1033-41. doi: 10.1021/nn901181c. PMID 20121065.

Taghavi Estevez AS, Sahar, Nia, Azadeh Hashem, Abnous Khalil, Ramezani, Mohammad. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 Aptamer for combination gene and drug delivery into human gastric cancer cells. Letter to the Editor. Int J Pharm. 2016;497(1-2):2-42. doi: 10.1016/j.ijpharm.2015.11.006, PMID 26611667.

Wu X, Ding B, Gao J, Wang H, Fan W, Wang X, Zhang W, Wang X, Ye L, Zhang M, Ding X, Livu J, Gao SZhu Q, Gao S. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomed. 2011;6:1747-56. doi: 10.2147/IJN.S23747, PMID 21980237.

Lee SK, Park MW, Yang EG, Yu J, Jeong S. An RNA aptamer that binds to the beta-catenin interaction domain of TCF-1 protein. Biochem Biophys Res Commun. 2005;327(1):294-9. doi: 10.1016/j.bbrc.2004.12.011, PMID 15629461.

Lee IH, An S, Yu MK, Kwon HK, Im SH, Jon S. Targeted chemoimmunotherapy using drug–loaded aptamer-dendrimer bioconjugates. J Control Release. 2011;155(3):435-41. doi: 10.1016/j.jconrel.2011.05.025, PMID 21641946.

Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W. RNA Aptamer against a cancer stem cell marker epithelial cell adhesion molecules. Cancer Sci. 2011;102(5):991-8. doi: 10.1111/j.1349-7006.2011.01897.x, PMID 21281402.

Bardeesy N, Pelletier J. Overlapping RNA and DNA binding domains of the wt1 tumor suppressor gene product. Nucleic Acids Res. 1998;26(7):1784-92. doi: 10.1093/nar/26.7.1784, PMID 9512553.

ZhouZhou J, Satheesan S, Li H, Weinberg MS, Morris KV, Burnett JC, Rossi JJ. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol. 2015;22(3):1-12:379-90. doi: 10.1016/j.chembiol.2015.01.005, PMID 25754473.

Lee HK, Choi YS, Park YA, Jeong S. Modulation of oncogenic transcription and alternative splicing by beta-catenin and an RNA aptamer in colon cancer cells. Cancer Research. 2006;66(21):10560-6. doi: 10.1158/0008-5472.CAN-06-2526, PMID 17079480.

O'’Codnnell D, Koenig A, Jennings S, Hicke B, Han HL, Fitzwater T, Chang YF, Varki N, Parma D, Varki A. Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(12):5883-7. doi: 10.1073/pnas.93.12.5883, PMID 8650187.

Vavalle JP, Cohen MG. The REG1 anticoagulation system: a novel actively controlled factor IX inhibitor using RNA aptamer technology for treatment of acute coronary syndrome. Future Cardiol. 2012;8(3):371-82. doi: 10.2217/fca.12.5, PMID 22420328.

Lee YJ, Lee SW. Regression of hepatocarcinoma cells using RNA aptamer specific to alpha-fetoprotein. Biochemical and Biophysical Research Communications. 2012; 417(1):521-7. doi: 10.1016/j.bbrc.2011.11.153, PMID 22166203.

Kim MY, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther. 2011;21(3):173-8. doi: 10.1089/nat.2011.0283, PMID 21749294.

Niu W, Chen X, Tan W, Veige AS. N-heterocyclic carbene–gold (I) complexes conjugated to a leukemia-specific DNA aptamer for targeted drug delivery. Angew Chem Int. Ed Engl. 2016;55(31):1-68889-93. doi: 10.1002/anie.201602702, PMID 27311814.

Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH. Dimeric DNA Aptamer complexes for high-capacity–targeted drug delivery using pH-sensitive covalent linkages. Mol Ther Nucleic Acids. 2013;2:107e107. doi: 10.1038/mtna.2013.37, PMID 23860551.

Dai B, Hu Y, Duan J, Yang XD. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget. 2016;7(25):38257-69. doi: 10.18632/oncotarget.9431, PMID 27203221.

Atabi F, Mousavi Gargari SLM, Hashemi M, Yaghmaei P. Doxorubicin loaded DNA Aptamer linked yristilated chitosan nanogel for targeted drug delivery to prostate cancer. Iran J Pharm Res. 2017;16(1):35-49. PMID 28496460.

Han SR, Lee SW. In vitro selection of RNA Aptamer specific to salmonella typhimurium. J Microbiol Biotechnol. 2013;23(6):878-84. doi: 10.4014/jmb.1212.12033, PMID 23676911.

Ostroff RM, Bigbee WL, Franklin W, Gold L, Mehan M, Miller YE, Pass HI, Rom WN, Siegfried JM, Stewart A, Walker JJ, Weissfeld JL, Williams S, Zichi D, Brody EN. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS One. 2010;5(12):e15003. doi: 10.1371/journal.pone.0015003. PMID 21170350.

Xian WY, Zhong YZ, Yan SC, Bin YYWang Y, Ye Z, Si C, Ying Y. Application of Aptamer-based biosensors for detection of pathogenic microorganisms. Chin J Anal Chem. 2012;40(4):634-42. doi: 10.1016/S1872-2040(11)60542-2.

Hui YX, Jun KW, Hua YM, Ming Z, Zhen OYang X, Kong W, Yang M, Zhao M, Ouyang Z. Application of Aptamer identification technology in rapid analysis of mycotoxins. Chin J Anal Chem. 2013;41(2):297-306. doi: 10.1016/S1872-2040(13)60630-1.

Qiao L, Lv B, Feng X, Li C. A new application of aptamer: One-step purification and immobilization of enzyme from cell lysates for biocatalysis. J Biotechnol. 2015;203:68-76. doi: 10.1016/j.jbiotec.2015.03.014, PMID 25835950.

Zhang W, Liu QX, Guo ZH, Lin JS. Practical application of Aptamer-based Biosensorsin detection of low molecular weight pollutants in water sources. Molecules. 2018;23(2):344. doi: 10.3390/molecules23020344, PMID 29414854.



How to Cite

KUMAR, V., RAJ S., B., KANAKARAJ, L., PAUL A., D., K., K., M., R., & P., S. (2022). APTAMER: A REVIEW ON IT’S IN VITRO SELECTION AND DRUG DELIVERY SYSTEM. International Journal of Applied Pharmaceutics, 14(2), 35–42. https://doi.org/10.22159/ijap.2022v14i2.43594



Review Article(s)