IDENTIFICATION OF FGFR INHIBITOR AS ST2 RECEPTOR/INTERLEUKIN-1 RECEPTOR-LIKE 1 INHIBITOR IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE DUE TO EXPOSURE TO E-CIGARETTES BY NETWORK PHARMACOLOGY AND MOLECULAR DOCKING PREDICTION

Authors

  • MUTHIA NURHIDAYAH Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI Depok 16424, Indonesia
  • FADILAH FADILAH Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya no 6, Indonesia
  • ADE ARSIANTI Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya no 6, Indonesia
  • ANTON BAHTIAR Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Gedung Fakultas Farmasi Kampus UI Depok 16424, Indonesia https://orcid.org/0000-0002-2924-3677

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43784

Keywords:

COPD, ST2 receptor, IL1Rl-1, Network Pharmacology, Molecular Docking

Abstract

Objective: This study was designed to search for candidate drugs that act on IL-33 and ST2, which was carried out using a bioinformatics approach.

Methods: We first analyzed Network Electronic Cigarette Smokes Predictions of therapeutic targets by Cytoscape. We collected from the Swiss TargetPrediction database [http://www.swisstargetprediction.ch/] by inputting each compound structure of the electronic cigarette smoke in SDF format. The target protein data is then supplemented with UniProt ID data to uniform protein identity. We then identified COPD Related Targets in Humans by Cytoscape. Subsequently, we identified key receptors in the pathogenesis of COPD. All target proteins that have a significant role in the pathogenesis of COPD exposed to cigarette smoke will be known from the combination of this network.

Results: Based on the validation results of the protein receptor for ST2, a protein is used as a receptor with PDB ID: 1IRA. After analyzed by PyMol software, a protein with PDB ID 1IRA it has no missing residue in its sequenceDrug candidates analyzed by the structural similarity with the native ligand using PubChem and DRUGBANK analysis are follow: N-acetylmannosamine, Aceneuramic acid, Ceramide AP, Ceramide NP, Hg9a-9, Nonanoyl-N-hydroxyethylglucamide, N-Acetyl-2-deoxy-2-amino-galactose, N-Acetyllactosamine, MLi/2,6-dimethyl-4-[6-[5-[1-methylcyclopropyl] oxy-1H-indazol-3-yl] pyrimidin-4-yl] morpholine, Terazosin, BMS-911543, NAG Inhibitor, FGFR Inhibitor/sodium;2-amino-5-[1-methoxy-2-methylindolizine-3-carbonyl] benzoate. After docking, the smallest or more negative binding affinity values are obtained. The stronger the FGFR Inhibitor ligand showed the interaction with the Receptor with a binding affinity value of -9.0 kcal/mol with mode/position 0, and RMSD 0.0. The second smallest binding affinity value is the NAG ligand with a -8.5 kcal/mol with mode/position 0 and RMSD 0.0.

Conclusion: The findings revealed that FGFR Inhibitor was a suitable repurposing medication for anti-COPD development via the IL-33/ST-2 signaling pathway.

Downloads

Download data is not yet available.

References

Twyman L, Watts C, Chapman K, Walsberger SC. Electronic cigarette use in New South Wales, Australia: reasons for use, place of purchase and use in enclosed and outdoor places. Aust N Z J Public Health [Internet]. 2018 Oct 1;42(5):491–6. Available from: https://doi.org/10.1111/1753-6405.12822

Bozier J, Chivers EK, Chapman DG, Larcombe AN, Bastian NA, Masso-Silva JA, et al. The Evolving Landscape of e-Cigarettes: A Systematic Review of Recent Evidence. Chest [Internet]. 2020 May 1;157(5):1362–90. Available from: https://doi.org/10.1016/j.chest.2019.12.042

Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, et al. Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am J Respir Crit Care Med [Internet]. 2018 Jul 1;198(1):67–76. Available from: https://pubmed.ncbi.nlm.nih.gov/29481290

Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis [Internet]. 2011/08/05. 2011;6:413–21. Available from: https://pubmed.ncbi.nlm.nih.gov/21857781

RAHMAD, NARASATI S, NUGROHO EKO, WITJAKSONO D, LESTARI DWII, NUGROHO MB, et al. THE ROLE OF PULMONARY REHABILITATION IN ACUTE EXACERBATIONS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE. Int J Appl Pharm [Internet]. 2020 Oct 15;12(3 SE-Full Proceeding Paper):39–40. Available from: https://innovareacademics.in/journals/index.php/ijap/article/view/39466

Herr C, Han G, Li D, Tschernig T, Dinh QT, Beißwenger C, et al. Combined exposure to bacteria and cigarette smoke resembles characteristic phenotypes of human COPD in a murine disease model. Exp Toxicol Pathol [Internet]. 2015;67(3):261–9. Available from: https://www.sciencedirect.com/science/article/pii/S0940299315000032

Chen J, Zhou H, Wang J, Zhang B, Liu F, Huang J, et al. Therapeutic effects of resveratrol in a mouse model of HDM-induced allergic asthma. Int Immunopharmacol [Internet]. 2015;25(1):43–8. Available from: https://www.sciencedirect.com/science/article/pii/S156757691500020X

Milevoj Kopčinović L, Domijan A-M, Posavac K, Čepelak I, Žanić Grubišić T, Rumora L. Systemic redox imbalance in stable chronic obstructive pulmonary disease. Biomarkers [Internet]. 2016 Nov 16;21(8):692–8. Available from: https://doi.org/10.3109/1354750X.2016.1172110

Barnes PJ. Inhaled Corticosteroids in COPD: A Controversy. Respiration [Internet]. 2010;80(2):89–95. Available from: https://www.karger.com/DOI/10.1159/000315416

Boardman C, Chachi L, Gavrila A, Keenan CR, Perry MM, Xia YC, et al. Mechanisms of glucocorticoid action and insensitivity in airways disease. Pulm Pharmacol Ther [Internet]. 2014;29(2):129–43. Available from: https://www.sciencedirect.com/science/article/pii/S1094553914001072

Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–58.

Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane database Syst Rev [Internet]. 2017 Sep 19;9(9):CD002309–CD002309. Available from: https://pubmed.ncbi.nlm.nih.gov/28922692

Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis [Internet]. 2017 Apr;9(4):1144–54. Available from: https://pubmed.ncbi.nlm.nih.gov/28523172

Khan PA, Sujala A, Nousheen BBS, Fatima AF, Ala HT, Reddy ABTP. A COMPARATIVE EVALUATION OF THE EFFICACY OF TRIPLE DRUG THERAPY WITH DUAL DRUG THERAPY IN COPD PATIENTS. Int J Pharm Pharm Sci [Internet]. 2018 Apr 1;10(4 SE-Original Article(s)):105–9. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/24529

Unni A, Jayaprakash AK, Mc. Y, P. UD. DRUG UTILIZATION PATTERN IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE INPATIENTS AT A TERTIARY CARE HOSPITAL. Int J Pharm Pharm Sci [Internet]. 2015 Nov 1;7(11 SE-Short Communication(s)):389–91. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/8166

Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther [Internet]. 2020;5(1):248. Available from: https://doi.org/10.1038/s41392-020-00345-x

Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C, et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors--insight into heterotrimeric IL-1 signaling complexes. Structure [Internet]. 2009;17(10):1398–410. Available from: http://europepmc.org/abstract/MED/19836339

Qiu C, Li Y, Li M, Li M, Liu X, McSharry C, et al. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. Immunology [Internet]. 2013 Jan;138(1):76–82. Available from: https://pubmed.ncbi.nlm.nih.gov/23078031

Cunningham A, McAdam K, Thissen J, Digard H. The Evolving E-cigarette: Comparative Chemical Analyses of E-cigarette Vapor and Cigarette Smoke [Internet]. Vol. 2, Frontiers in Toxicology . 2020. p. 7. Available from: https://www.frontiersin.org/article/10.3389/ftox.2020.586674

Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res [Internet]. 2014/05/03. 2014 Jul;42(Web Server issue):W32–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24792161

Han L, Wang Y, Bryant SH. A survey of across-target bioactivity results of small molecules in PubChem. Bioinformatics [Internet]. 2009 Sep 1;25(17):2251–5. Available from: https://doi.org/10.1093/bioinformatics/btp380

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database [Internet]. 2010 Jan 1;2010. Available from: https://doi.org/10.1093/database/baq020

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res [Internet]. 2015 Jan 28;43(D1):D789–98. Available from: https://doi.org/10.1093/nar/gku1205

Wu L, Chen Y, Yi J, Zhuang Y, Cui L, Ye C. Mechanism of Action of Bu-Fei-Yi-Shen Formula in Treating Chronic Obstructive Pulmonary Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. Li K, editor. Biomed Res Int [Internet]. 2020;2020:9105972. Available from: https://doi.org/10.1155/2020/9105972

Li M, Wang J, Pan Y, Wu F-X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2014 Nov 15;127C:67–72.

Rao VS, Srinivas K, Sujini GN, Kumar GNS. Protein-Protein Interaction Detection: Methods and Analysis. Zhou Y, editor. Int J Proteomics [Internet]. 2014;2014:147648. Available from: https://doi.org/10.1155/2014/147648

Zhang Y, Gao P, Yuan JS. Plant protein-protein interaction network and interactome. Curr Genomics [Internet]. 2010 Mar;11(1):40–6. Available from: https://pubmed.ncbi.nlm.nih.gov/20808522

Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, et al. Validation of Structures in the Protein Data Bank. Structure [Internet]. 2017/11/22. 2017 Dec 5;25(12):1916–27. Available from: https://pubmed.ncbi.nlm.nih.gov/29174494

Majorek KA, Zimmerman MD, Grabowski M, Shabalin IG, Zheng H, Minor W. Assessment of Crystallographic Structure Quality and Protein–Ligand Complex Structure Validation [Internet]. Structural Biology in Drug Discovery. 2020. p. 253–75. (Wiley Online Books). Available from: https://doi.org/10.1002/9781118681121.ch11

Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein Sci [Internet]. 2018 Jan 1;27(1):129–34. Available from: https://doi.org/10.1002/pro.3289

Sladek V, Yamamoto Y, Harada R, Shoji M, Shigeta Y, Sladek V. pyProGA—A PyMOL plugin for protein residue network analysis. PLoS One [Internet]. 2021 Jul 30;16(7):e0255167. Available from: https://doi.org/10.1371/journal.pone.0255167

Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases. Clin Chim Acta [Internet]. 2020;507:75–87. Available from: https://www.sciencedirect.com/science/article/pii/S0009898120301662

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res [Internet]. 2006 Jan 1;34(Database issue):D668–72. Available from: https://pubmed.ncbi.nlm.nih.gov/16381955

Bühlmann S, Reymond J-L. ChEMBL-Likeness Score and Database GDBChEMBL [Internet]. Vol. 8, Frontiers in Chemistry . 2020. p. 46. Available from: https://www.frontiersin.org/article/10.3389/fchem.2020.00046

Opo FADM, Rahman MM, Ahammad F, Ahmed I, Bhuiyan MA, Asiri AM. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci Rep [Internet]. 2021;11(1):4049. Available from: https://doi.org/10.1038/s41598-021-83626-x

Sargis D, J. OA. Small-Molecule Library Screening by Docking with PyRx. In: Chemical Biology. 2014. p. 243–50.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res [Internet]. 2003 Nov;13(11):2498–504. Available from: https://pubmed.ncbi.nlm.nih.gov/14597658

Kim RY, Oliver BG, Wark PAB, Hansbro PM, Donovan C. COPD exacerbations: targeting IL-33 as a new therapy. Lancet Respir Med [Internet]. 2021 Oct 31; Available from: https://doi.org/10.1016/S2213-2600(21)00182-X

Pinto SM, Subbannayya Y, Rex DAB, Raju R, Chatterjee O, Advani J, et al. A network map of IL-33 signaling pathway. J Cell Commun Signal [Internet]. 2018;12(3):615–24. Available from: http://europepmc.org/abstract/MED/29705949

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res [Internet]. 2000 Jan 1;28(1):235–42. Available from: https://pubmed.ncbi.nlm.nih.gov/10592235

Published

03-01-2022

How to Cite

NURHIDAYAH, M., FADILAH, F., ARSIANTI, A., & BAHTIAR, A. (2022). IDENTIFICATION OF FGFR INHIBITOR AS ST2 RECEPTOR/INTERLEUKIN-1 RECEPTOR-LIKE 1 INHIBITOR IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE DUE TO EXPOSURE TO E-CIGARETTES BY NETWORK PHARMACOLOGY AND MOLECULAR DOCKING PREDICTION. International Journal of Applied Pharmaceutics, 14(2). https://doi.org/10.22159/ijap.2022v14i2.43784

Issue

Section

Original Article(s)