TARGETED DRUG DELIVERY SYSTEM; NANOPARTICLE BASED COMBINATION OF CHITOSAN AND ALGINATE FOR CANCER THERAPY: A REVIEW

Authors

  • ADE IRMA SURYANI Master Program in the Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • NASRUL WATHONI Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • MUCHTARIDI MUCHTARIDI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • I. MADE JONI Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia, Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor 45363, Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43818

Keywords:

Nanoparticles, Chitosan, Alginate, Cancer therapy, Targeted delivery, Polymer

Abstract

This review aimed to determine the potential of the combination of chitosan and alginate as a targeted drug carrier in cancer therapy. This article is based on the results of previous research journals collected from Google Scholar, Scopus, PubMed and Science Direct sites using the keywords chitosan, alginate, targeted drug delivery for cancer, nanoparticle chitosan alginate. With the inclusion criteria, only English-language journals, journals published in the last 10 y, related to chitosan and alginate-based formulations. Meanwhile, the exclusion criteria were journals on pharmacological properties and bioactivity, food and cosmetics. The combination of cationic chitosan and anionic alginate forming strong cross-links showed good mucoadhesive properties, higher resistance to low pH and high-efficiency encapsulation without showing any obvious cytotoxicity. Ch/Alg can overcome the shortcomings of the active substance, such as its rapid release process and the required active ingredient is lower than that required to enter the cancer target cells so as to minimize side effects of the drug by providing drug-induced release. in response to various stimuli that are well suited to the intended purpose, such as pH stimuli, redox gradients, light, temperature, and magnetism. It is shown that the combination of chitosan and alginate base has great potential in targeting cancer therapy by increasing its therapeutic effectiveness and selectivity.

Downloads

Download data is not yet available.

References

Seidi K, Jahanban Esfahlan R, Monhemi H, Zare P, Minofar B, Daei Farshchi Adli A, Farajzadeh D, Behzadi R, Mesgari Abbasi M, Neubauer HA, Moriggl R, Zarghami N, Javaheri T. NGR (Asn–Gly–Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene. 2018;37(29):3967-80. doi: 10.1038/s41388-018-0213-4, PMID 29662195.

Kunduru KR, Basu A, Domb AJ. Biodegradable polymers: medical applications biodegradable polymers. Med Appl. 2018;10:1-22.

Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci. 2014;209:163-71. doi: 10.1016/j.cis.2014.03.009, PMID 24745976.

Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio Sens Res. 2017;13:81-7. doi: 10.1016/j.sbsr.2016.08.002.

Bahrami B, Hojjat Farsangi MF, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64-83. doi: 10.1016/j.imlet.2017.07.015, PMID 28760499.

Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv. 2016;13(6):891-909. doi: 10.1517/17425247.2016.1156671, PMID 26983898.

Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104(12):6017-84. doi: 10.1021/cr030441b, PMID 15584695.

Gavini E, Rassu G, Haukvik T, Lanni CA, Racchi M, Giunchedi P. Mucoadhesive microspheres for nasal administration of cyclodextrins. J Drug Target. 2009;17(2):168-79. doi: 10.1080/10611860802556842, PMID 18985506.

Di Martino A, Pavelkova A, Postnikov PS, Sedlarik V. Enhancement of 5-aminolevulinic acid phototoxicity by encapsulation in polysaccharides based nanocomplexes for photodynamic therapy application. J Photochem Photobiol B. 2017;175:226-34. doi: 10.1016/j.jphotobiol.2017.08.010. PMID 28915492.

Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: A promising system in novel drug delivery. Chem Pharm Bull. 2010;58(11):1423-30. doi: 10.1248/cpb.58.1423.

Sheng J, Han L, Qin J, Ru G, Li R, Wu L, Cui D, Yang P, He Y, Wang J. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430-41. doi: 10.1021/acsami.5b03555, PMID 26111015.

Senel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev. 2004;56(10):1467-80. doi: 10.1016/j.addr.2004.02.007, PMID 15191793.

Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release. 2017;260:213-25. doi: 10.1016/j.jconrel.2017.06.010, PMID 28625671.

Tiyaboonchai W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ J. 2003;11:51-66.

Sun Y, Wan A. Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. J Appl Polym Sci. 2007;105(2):552-61. doi: 10.1002/app.26038.

Hargono H, Abdullah AA, Sumantri I. Pembuatan Kitosan dari limbah cangkang udang serta Aplikasinya dalam Mereduksi kolesterol lemak kambing. Reaktor. 2008;12(1):53. doi: 10.14710/reaktor.12.1.53-57.

Wang Y, Jia Y, Yan L, Fu J, Hao M, Chen W, Yao B, Zhao P, Zhou Z. Clusterin and Neuropilin-2 as potential biomarkers of tumor progression in benzo[a]pyrene-transformed 16HBE cells xenografted nude mouse model. Chem Biol Interact. 2017;275:145-51. doi: 10.1016/j.cbi.2017.08.002, PMID 28784314.

Hardy A, Seguin C, Brion A, Lavalle P, Schaaf P, Fournel S, Bourel-Bonnet L, Frisch B, De Giorgi M. β-cyclodextrin-functionalized chitosan/Alginate compact polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. ACS Appl Mater Interfaces. 2018;10(35):29347-56. doi: 10.1021/acsami.8b09733, PMID 30107127.

Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23(1):5-36. doi: 10.1177/0885328208091562, PMID 18593819.

Diebold Y, Jarrin M, Saez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28(8):1553-64. doi: 10.1016/j.biomaterials.2006.11.028, PMID 17169422.

Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3-11. doi: 10.1016/j.addr.2009.09.004, PMID 19800377.

Woraphatphadung T, Sajomsang W, Rojanarata T, Ngawhirunpat T, Tonglairoum P, Opanasopit P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech. 2018;19(3):991-1000. doi: 10.1208/s12249-017-0906-y, PMID 29110292.

Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M. Ultrastructural characterization of the lower motor system in a mouse model of krabbe disease. Sci Rep. 2016;6(1):1. doi: 10.1038/s41598-016-0001-8. PMID 28442746.

Aranaz I. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3:203-30.

Zhao X, Zhou L, Li Q, Zou Q, Du C. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Carbohydr Polym. 2018;195:225-34. doi: 10.1016/j.carbpol.2018.04.090, PMID 29804972.

Yan L, Crayton SH, Thawani JP, Amirshaghaghi A, Tsourkas A, Cheng Z. A pH-responsive drug-delivery platform based on glycol chitosan-coated liposomes. Small. 2015;3711(37):4870-4. doi: 10.1002/smll.201501412, PMID 26183232.

Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273-86. doi: 10.1016/j.ijbiomac.2017.12.078, PMID 29248555.

Ho DK, Sarah BF, Alexander T, Emmanuel RD, Chiara S, Franziska LHo DK, Frisch S, Biehl A, Terriac E, De Rossi C, Schwarzkopf K, Lautenschlager F, Loretz B, Murgia X, Lehr CM. Farnesylated glycol chitosan as a platform for drug delivery: synthesis, characterization, and investigation of mucus-particle interactions. Biomacromolecules. 2018;19(8):3489-501. doi: 10.1021/acs.biomac.8b00795, PMID 29989799.

Xiao B, Veronicka B, Komal Q, Bessi D, Alexandria D, Myron RXiao B, Chen Q, Zhang Z, Wang L, Kang Y, Denning T, Merlin D. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Controlled Release. 2018;287:235-46. doi: 10.1016/j.jconrel.2018.08.021, PMID 30107214.

Martinez M, Rodriguez B, Guillermo GA, Isabel H, Corma M, Avelino B, Martinez Martinez M, Rodriguez Berna G, Gonzalez Alvarez I, Hernandez MJ, Corma A, Bermejo M, Merino V, Gonzalez-Alvarez M. Ionic hydrogel based on chitosan cross-linked with 6-phosphogluconic trisodium salt as a drug delivery system. Biomacromolecules. 2018;19(4):1294-304. doi: 10.1021/acs.biomac.8b00108, PMID 29537830.

Yan Q, Chen X, Gong H, Qiu P, Xiao X, Dang S, Hong A, Ma Y. Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis. FASEB J. 2018:fj201800377R. doi: 10.1096/fj.201800377R. PMID 30161002.

Toxicol C, Res A. Formulation, characterization, and herbal drug delivery applications of ethosome, Transfersome, and Transethosome Luthfia. Indonesian J Pharm. 2020;20:185-95.

Li J, Chao L, Jiarui L, Jun L, Sun J, Tiantian WLi J, Cai C, Sun T, Wang L, Wu H, Yu G. Chitosan-based nanomaterials for drug delivery. Molecules. 2018;23(10):1-26. doi: 10.3390/molecules23102661, PMID 30332830.

Heng PWS. Compaction of coated multi-particulates. Asian J Pharm Sci. 2016;11(1):12-3. doi: 10.1016/j.ajps.2015.10.010.

Widyastuti S. Alginate content of the seaweeds grown in coastal zone of Lombok extracted by two extraction methods. J Teknologi Pertanian. 2009;10:144-52.

Ode I, Wasahua J. Jenis-jenis alga coklat potensial di perairan pantai desa hutumuri pulau ambon. Agrikan: Jurnal Agribisnis Perikanan Agrikan: J Agro Fish. 2014;7(2):39. doi: 10.29239/j.agrikan.7.2.39-45.

Li J, He J, Huang Y. Role of alginate in antibacterial finishing of textiles. Int J Biol Macromolecules. 2017;94(A):466-73. doi: 10.1016/j.ijbiomac.2016.10.054, PMID 27771407.

Pawar SN, Edgar KJ. Alginate derivatization: Aa review of chemistry, properties and applications. Biomaterials. 2012;33(11):3279-3305. doi: 10.1016/j.biomaterials.2012.01.007, PMID 22281421.

Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10:483-507. doi: 10.2147/DDDT.S99651, PMID 26869768.

Alsmadi MM, Obaidat RM, Alnaief M, Albiss BA, Hailat N. Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate nanoporous carriers loaded with cisplatin for lung cancer treatment. AAPS PharmSciTech. 2020;21(5):1-12191. doi: 10.1208/s12249-020-01735-8, PMID 32661587.

Sahatsapan N, Ngawhirunpat T, Rojanarata T, Opanasopit P, Patrojanasophon P. Catechol-functionalized alginate nanoparticles as mucoadhesive carriers for intravesical chemotherapy. AAPS PharmSciTech. 2020;21(6):1-9212. doi: 10.1208/s12249-020-01752-7, PMID 32737610.

Poon Z, Chang D, Zhao X, Hammond PT. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano. 2011;5(6):4284-92. doi: 10.1021/nn200876f, PMID 21513353.

Chen Y, Lin X, Park H, Greever R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomed: Nanotechnol, Biol, Med. 2009;5(3):316-22. doi: 10.1016/j.nano.2008.12.005, PMID 19523432.

Costa RR, Mano F, Costa RR. Chem soc rev polyelectrolyte multilayered assemblies. In: Biomedical technologies. Vol. 10. Royal Society of Chemistry; 2014. p. 1-27.

Xiao F, Pagliaro M, Xu Y, Liu B. Chem Soc Rev Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality : a new perspective for rational construction of multilayer assemblies. Vol. 15. Royal Society of Chemistry; 2014. p. 27-35.

Oliveira MB, Hatami J, Mano JF. Coating strategies using layer-by-layer deposition for cell encapsulation. Chem Asian J. 2016;11(12):1753-64. doi: 10.1002/asia.201600145, PMID 27213990.

Wathoni N, Diah I, Motoyama K, Mohammed A, Cahyanto A, Marline A, Wathoni N, Sari DP, Suharyani I, Motoyama K, Mohammed AFA, Cahyanto A, Abdassah M, Muchtaridi M. Enhancement of α-mangostin wound healing ability by complexation with 2-hydroxypropyl-β-cyclodextrin in hydrogel formulation. Pharmaceuticals (Basel). 2020;13(10):1-16. doi: 10.3390/ph13100290, PMID 33023196.

Shim BS, Podsiadlo S, Lilly P, Daniel GA, Ashish L, Jaebom T, Shim BS, Podsiadlo P, Lilly DG, Agarwal A, Lee J, Tang Z, Ho S, Ingle P, Paterson D, Lu W, Kotov NA. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Letters. 2007;7(11):3266-73. doi: 10.1021/nl071245d, PMID 17935371.

Sundaram, Sujatha S, Indrea S, Stephanie S, Rendall H, Jack DP, Sundaram S, Sea A, Feldman S, Strawbridge R, Hoopes PJ, Demidenko E, Binderup L, Gewirtz DA. The combination of a potent vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clinical Cancer Research. 2003;9(6):2350-6. PMID 12796405.

Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Materials. 2004;16(21):4022-4027. doi: 10.1021/cm049422o.

Rydzek G, Gaulthier A, Jierry B, Philippe L, Ponche M, Contal A, Rydzek G, Thomann JS, Ben Ameur N, Jierry L, Mésini P, Ponche A, Contal C, El Haitami AE, Voegel JC, Senger B, Schaaf P, Frisch B, Boulmedais F. Polymer multilayer films obtained by electrochemically catalyzed click chemistry. Langmuir. 2010;26(4):2816-24. doi: 10.1021/la902874k, PMID 19950954.

Voigt A, Lichtenfeld H, Sukhorukov GB, Zastrow H, Donath E, Bäumler H, Möhwald H. Membrane filtration for microencapsulation and microcapsules fabrication by layer-by-layer polyelectrolyte adsorption. Ind Eng Chem Res. 1999;38(10):4037-43. doi: 10.1021/ie9900925.

Picart C, Lavalle P, Hubert P, Cuisinier FJG, Decher JG, Schaaf P, Voegel JC. Buildup mechanism for Poly poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir. 2001;17(23):7414-24. doi: 10.1021/la010848g.

Richardson JJ, Ejima E, Hirotaka L, Samuel L, Liang K, Senn PRichardson JJ, Ejima H, Lorcher SL, Liang K, Senn P, Cui J, Caruso F. Preparation of nano- and microcapsules by electrophoretic polymer assembly. Angewandte Chemie International Edition Engl. 2013;52(25):6455-8. doi: 10.1002/anie.201302092, PMID 23657949.

Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant staphylococcus aureus. J Pharm Pharmacol. 1996;48(8):861-5. doi: 10.1111/j.2042-7158.1996.tb03988.x, PMID 8887739.

Donath E, Walther D, Shilov VN, Knippel E, Budde A, Lowack K, Helm CA, Mohwald H. Nonlinear hairy layer theory of electrophoretic fingerprinting applied to consecutive layer by layer polyelectrolyte adsorption onto charged polystyrene latex particles. Langmuir. 1997;13(20):5294-305. doi: 10.1021/la970090u.

Grigoriev DO, Bukreeva T, Mohwald H, Shchukin DG. New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir. 2008;24(3):999-1004. doi: 10.1021/la702873f. PMID 18163658.

Hoogeveen NG, Stuart MAC, Fleer GJ, Bo MR, Hoogeveen NG, Cohen Stuart MA, Fleer GJ, Bohmer MR. Formation and stability of multilayers of polyelectrolytes. Langmuir. 1996;12(15):3675-81. doi: 10.1021/la951574y.

Richardson JJ, Teng D, Bjornmalm M, Gunawan ST, Guo J, Cui J, Franks GV, Caruso F. Fluidized bed layer-by-layer microcapsule formation. Langmuir. 2014;30(33):10028-34. doi: 10.1021/la502176g, PMID 25113552.

Thomas IM. Single-layer TiO(2) and multilayer TiO(2)-SiO(2) optical coatings prepared from colloidal suspensions. Applied Optics. 1987;26(21):4688-91. doi: 10.1364/AO.26.004688, PMID 20523426.

Schlenoff JB, Dubas ST, Farhat T. Sprayed polyelectrolyte multilayers. Langmuir. 2000;16(26):9968-9. doi: 10.1021/la001312i.

Ma L., Cheng M, Jia G, Wang Y, An Q, Zeng X, Shen Z, Zhang Y, Shi F. Layer-by-layer self-assembly under high gravity field. Langmuir. 2012;28(25):9849-56. doi: 10.1021/la301553w, PMID 22639916.

Quinñones JP, Peniche H, Peniche C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers. 2018;10(3):1-32. doi: 10.3390/polym10030235, PMID 30966270.

Psycha HI, Anindya WS, Sismindari N, Ronny M. Formulation and cytotoxicity of ribosome-inactivating protein Mirabilis jalapa L. nanoparticles using alginate-low viscosity chitosan conjugated with anti-Epcam antibodies in the T47D breast cancer cell line. Asian Pac J Cancer Prev. 2016;4:2277-84.

Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J. N -trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N -trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Controlled Release. 2018;277:142-53. doi: 10.1016/j.jconrel.2018.03.013.

Wu WC, Wang SH, Ou ST, Liu YWH, Liu BH, Tseng FG. Electrosprayed chitosan/alginate/polyvinyl alcohol nanoparticles as boric acid carriers for 10Boron neutron capture therapy. Nanomedicine (Lond). 2020;15(11):1067-77. doi: 10.2217/nnm-2019-0465, PMID 32326875.

Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):1-13. doi: 10.3390/cancers11050640, PMID 31072061.

Jee JP, Na JH, Lee S, Kim SH, Choi K, Yeo Y, Kwon IC. Cancer targeting strategies in nanomedicine: design and application of chitosan nanoparticles. Curr Opinion Solid State Materials Science. 2012;16(6):333-42. doi: 10.1016/ j.cossms.2013.01.002.

Woraphatphadung T, Sajomsang W, Rojanarata T, Ngawhirunpat T, Tonglairoum P, Opanasopit P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech. 2018;19(3):991-1000. doi: 10.1208/s12249-017-0906-y, PMID 29110292.

Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence. 2019;6(1):1-30:23. doi: 10.1186/s40580-019-0193-2, PMID 31304563.

Zhong Z, Cai L, Li C. Characterization and targeting ability evaluation of cell-penetrating peptide Lyp-1 modified alginate-based Nnanoparticles. RSC Advances. 2020;10(54):32443-9. doi: 10.1039/D0RA06628A.

Mulia K, Singarimbun AC, Krisanti EA. Optimization of chitosan– alginate microparticles for delivery of mangostins to the colon area using box–Behnken experimental design. International Journal of Molecular Sciences. 2020;21(3):1-10. doi: 10.3390/ijms21030873, PMID 32013253.

Mulia K, Halimah N, Krisanti K. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract. AIP Conference Proceedings. 2017;1823:1-8.

Gascon S, Solano A, Giraldo EK, Wiam T, Helene B, Gascon S, Giraldo Solano A, El Kheir W, Therriault H, Berthelin P, Cattier B, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Characterization and mathematical modeling of alginate/chitosan-based nanoparticles releasing the chemokine cxclCXCL12 to attract glioblastoma cells. Pharmaceutics. 2020;12(4):1-21. doi: 10.3390/pharmaceutics12040356, PMID 32295255.

Di Martino AD, Trusova ME, Postnikov PS, Sedlarik V. Folic acid-chitosan-alginate nanocomplexes for multiple delivery of chemotherapeutic agents. J Drug Delivery Sci Technol. 2018;47:67-76. doi: 10.1016/j.jddst.2018.06.020.

Anirudhan TS, Sekhar VCV, Nair SS. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. Journal of Drug Delivery Science and Technology. 2019;51:569-82. doi: 10.1016/j.jddst.2019.03.036.

Jardim KV, Palomec-Garfias AF, Andrade BYG, Chaker JA, Bao SN, Marquez-Beltran C, Moya SE, Parize AL, Sousa MH. Novel magneto-responsive nanoplatforms based on MnFe2O4 Nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Materials Science and Engineering C Mater Biol Appl. 2018;92:184-95. doi: 10.1016/j.msec.2018.06.039, PMID 30184741.

Shanmugam BK, Rangaraj S, Subramani K, Srinivasan S, Aicher WK, Venkatachalam R. Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications. Materials Science and Engineering C. 2020;110:1-13.

Heneka MT, Mcmanus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nature Reviews Neuroscience. 2018;19(10):610-21. doi: 10.1038/s41583-018-0055-7, PMID 30206330.

Kuwako K, Okano H. The LKB1-SIK pathway controls dendrite self-Aavoidance in Purkinje cells report the LKB1-SIK pathway controls dendrite self-avoidance in Purkinje cells. Cell Reports. 2018;24:2808-18.

Cardoso AP, Goncalves RM, Antunes JC, Pinto ML, Pinto AT, Castro F, Monteiro C, Barbosa MA, Oliveira MJ. An interferon-γ-delivery system based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomaterialia. 2015;23:157-71. doi: 10.1016/j.actbio.2015.05.022, PMID 26013040.

Wang W, Qiuyu M, Qi Li, Jinbao L, Mo Z, Zheng J, Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences. 2020;21(2):1-26. doi: 10.3390/ ijms21020487, PMID 31940963.

Wang Z, Sun J, Qiu Y, Li W, Guo X, Li Q, Zhang H, Zhou J, Du Y, Yuan H, Hu F, You J. Specific photothermal therapy to the tumors with high EphB4 receptor expression. Biomaterials. 2015;68:32-41. doi: 10.1016/j.biomaterials.2015.07.058, PMID 26264644.

Shanmuganathan R, Edison TNJI, Lewis Oscar FO, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: an overview of drug delivery against cancer. International Journal of Biological Macromolecules. 2019;130:727-36. doi: 10.1016/j.ijbiomac.2019.02.060, PMID 30771392.

Zhang X, Yang X, Ji J, Liu A, Zhai G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids and Surfaces B: Biointerfaces. 2016;148:460-73. doi: 10.1016/ j.colsurfb.2016.09.020, PMID 27665379.

Hema S, Thambiraj S, Shankaran DR. Nanoformulations for targeted drug delivery to prostate cancer: an overview. Journal of Nanoscience and Nanotechnology. 2018;18(8):5171-91. doi: 10.1166/jnn.2018.15420, PMID 29458568.

Hyun H, Park MH, Jo G, Kim SY, Chun HJ, Yang DH. Photo-cured glycol chitosan hydrogel for ovarian cancer drug delivery. Marine Drugs. 2019;17(1):1-12. doi: 10.3390/md17010041, PMID 30634553.

Babu A, Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Marine Drugs. 2017;15(4):1-19. doi: 10.3390/md15040096, PMID 28346381.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1-17. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket PN, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Materials Science and Engineering C Mater Biol Appl. 2018;93:178-90. doi: 10.1016/j.msec.2018.07.069, PMID 30274050.

Rosch JG, Winter H, Duross AN, Sahay G, Sun C. Inverse micelle synthesis of doxorubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. Colloids and Interface Science Communications. 2019;28:69-74. doi: 10.1016/j.colcom.2018.12.002, PMID 31602357.

Shafawatbinti Rosli NS, Rahman AA, Aziz AA, Shamsuddin S, Ibrahim AR. The effect of gold nanoparticle size in the cellular uptake. Solid State Phenomena. 2019;290:75-80. doi: 10.4028/www.scientific.net/SSP.290.75.

Yang SJ, Shieh MJ, Lin FH, Lou PJ, Peng CL, Wei MF, Yao CJ, Lai PS, Young TH. Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Letters. 2009;1273(2):210-20. doi: 10.1016/ j.canlet.2008.08.014, PMID 18809246.

Gederaas OA, Rasch MH, Berg K, Lagerberg JW, Dubbelman TM. Photodynamically induced effects in colon carcinoma cells (WiDr) by endogenous photosensitizers generated by incubation with 5-aminolaevulinic acid. Journal of Photochemistry and Photobiol B Iogy 1999;1344. 1999;49(2-3):162-70. doi: 10.1016/s1011-1344(99)00051-2, PMID 10392465.

Zhang Y, Zhang YN, Gao W, Zhou R, Liu F, Ng TB, Zhang Y, Zhang Y, Gao W, Zhou R, Liu F, Ng TB. A novel antitumor protein from the mushroom Pholiota nameko induces apoptosis of human breast adenocarcinoma MCF-7 cells in vivo and modulates cytokine secretion in mice bearing MCF-7 xenografts. International Journal of Biological Macromolecules. 2020;164:3171-8. doi: 10.1016/j.ijbiomac.2020.08.187, PMID 32858105.

Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of Cancer Research and Clinical Oncology. 2015;141(5):769-84. doi: 10.1007/s00432-014-1767-3, PMID 25005786.

Lungu II, Grumezescu AM, Volceanov A, Andronescu E. Nanobiomaterials used in cancer therapy: an up-to-date overview. Molecules. 2019;24(19):1-21. doi: 10.3390/molecules24193547, PMID 31574993.

Bilensoy E. Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery. 20202010;2010;7(7):795-809. doi: 10.1517/17425247.2010.485983, PMID 20446858.

Salatin S, Yari Khosroushahi AY. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles Mechanisms of nanoparticle endocytosis. Journal of Cellular and Molecular Medicine. 2017;21(9):1668-86. doi: 10.1111/jcmm.13110, PMID 28244656.

Moraru C, Mincea M, Menghiu G, Ostafe V. Understanding the factors influencing chitosan-based nanoparticles-protein corona interaction and drug delivery applications. Molecules. 2020;25(20):1-33. doi: 10.3390/molecules25204758, PMID 33081296.

Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 2005;5(12):2448-64. doi: 10.1021/nl051748o, PMID 16351195.

Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:1-12. doi: 10.1155/2014/939378.

Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho YK, Kandere-Grzybowska K, Grzybowski BA. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat Nanotechnol. 2020;15(4):331-41. doi: 10.1038/s41565-020-0643-3. PMID 32203435.

Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers. 2020;12(2):1-22. doi: 10.3390/cancers12020522, PMID 32102429.

Pedraza JC, Cardenas NR, Orozco MI, Perez JM, Pedraza-Chaverri J, Cardenas Rodriguez N, Orozco Ibarra M, Perez Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food and Chemical Toxicology. 2008;46(10):3227-39. doi: 10.1016/j.fct.2008.07.024, PMID 18725264.

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3. doi: 10.1186/s40824-020-0184-8. PMID 31969986.

Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Advanced Drug Delivery Reviews. 2011;63(6):456-69. doi: 10.1016/j.addr.2011.02.001, PMID 21315781.

Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. Journal of Nanomaterials. 2015;2015:1-13. doi: 10.1155/2015/216375.

Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. doi: 10.1186/s40824-019-0166-x. PMID 31832232.

Farasat A, Rahbarizadeh F, Ahmadvand D, Ranjbar S, Khoshtinat Nikkhoi SK. Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin. Journal of Liposome Research. 2019;29(1):53-65. doi: 10.1080/08982104.2018.1430829, PMID 29621912.

Bilensoy E. Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery. 2010;7(7):795-809. doi: 10.1517/17425247.2010.485983.

Dermawan D, Wathoni N, Muchtaridi M. Host-guest interactions of α−mangostin with (α,β,γ)− cyclodextrins: semi-empirical quantum mechanical methods of PM6 and PM7. Journal of Young Pharmacists. 2018;11(1):31-5. doi: 10.5530/jyp.2019.11.7.

Published

11-12-2021

How to Cite

SURYANI, A. I., WATHONI, N., MUCHTARIDI, . M., & JONI, I. M. (2021). TARGETED DRUG DELIVERY SYSTEM; NANOPARTICLE BASED COMBINATION OF CHITOSAN AND ALGINATE FOR CANCER THERAPY: A REVIEW. International Journal of Applied Pharmaceutics, 13(4), 69–76. https://doi.org/10.22159/ijap.2021.v13s4.43818

Issue

Section

Review Article(s)