MELOXICAM SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM: FORMULATION AND RELEASE KINETICS ANALYSIS

Authors

  • SALMA AULIA Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121, Indonesia
  • LINA WINARTI Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121, Indonesia
  • YUDI WICAKSONO Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121, Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43856

Keywords:

Meloxicam, SNEDDS, The kinetics of release, DDSolver

Abstract

Objective: This study aimed to find the best SNEDDS meloxicam formula and analyze the release kinetics of meloxicam SNEDDS and non-SNEDDS using DDSolver. 

Methods: Meloxicam SNEDDS was prepared using sunflower seed oil, Cremophor RH 40 as a surfactant, and polyethylene glycol (PEG) 400 as a co-surfactant. 

Results: The best formula obtained subjected to the in vitro dissolution study was analyzed using DDSolver. The study shows one selected formula consists of 10% sunflower seed oil, 70% cremophor RH 40, and 20% PEG 400 with a 20.5 nm±12 nm droplet size. The dissolution study showed that SNEDDS could significantly increase the meloxicam release compared to the non-SNEDDS formulation. The kinetics of meloxicam release from SNEDDS formulations follow the Weibull release model (β = 1.00). 

Conclusion: This study concludes that SNEDDS best prepared in sunflower seeds oil: Chremophor RH 40: PEG 400 ratio of 1: 7: 2 and has the potency to increase the solubility and dissolution of meloxicam.

Downloads

Download data is not yet available.

References

Prasad V, De Jesus K, Mailankody S. The high price of anticancer drugs: origins, implications, barriers, solutions. Nat Rev Clin Oncol. 2017;14(6):381-90. doi: 10.1038/nrclinonc.2017.31, PMID 28290490.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1-3):75-87. doi: 10.1016/s0169-409x(00)00130-7, PMID 11259834.

Parekh VJ, Desai ND, Shaikh MS, Shinde UA. Self nanoemulsifying granules (SNEGs) of meloxicam: preparation, characterization, molecular modeling and evaluation of in vivo anti-inflammatory activity. Drug Dev Ind Pharm. 2017;43(4):600-10. doi: 10.1080/03639045.2016.1275665. PMID 28005437.

Bartos C, Ambrus R, Kovacs A, Gaspar R, Sztojkov-Ivanov A, Marki A, Janaky T, Tömösi F, Kecskemeti G, Szabo-Revesz P. Investigation of absorption routes of meloxicam and its salt form from intranasal delivery systems. Molecules. 2018;23(4):784. doi: 10.3390/molecules23040784, PMID 29597330.

Agrawal AG, Kumar A, Gide PS. Formulation of solid self-nanoemulsifying drug delivery systems using N-methyl pyrrolidone as cosolvent. Drug Dev Ind Pharm. 2015;41(4):594-604. doi: 10.3109/03639045.2014.886695, PMID 24517575.

Rao SV, Shao J. Self-nanoemulsifying drug delivery systems (snedds) for oral delivery of protein drugs: I. Formulation Development. Int J Pharm. 2008;362(1-2):2-9. doi: 10.1016/j.ijpharm.2008.05.018, PMID 18650038.

Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443-8. doi: 10.1016/j.jcis.2008.10.077, PMID 19038395.

Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2012;9(10):1305-17. doi: 10.1517/17425247.2012.719870, PMID 22954323.

Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond). 2010;5(10):1595-616. doi: 10.2217/nnm.10.126, PMID 21143036.

Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipient. 5th ed. London, Chicago: Pharmaceutical Press; 2006.

Badran MM, Taha EI, Tayel MM, Al-suwayeh SA. Ultra-fine self nano emulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq. 2014;190:16-22. doi: 10.1016/j.molliq.2013.10.015.

Sapra K, Singh SK. Formulation development and optimization of self-emulsifying drug delivery. Int J Pharm. 2013;5:524-30.

Puspita OE, Suwaldi NAK. Optimization of self-nanoemulsifying drug delivery system pterostilbene. J Food PharmSci. 2016;4:18-24.

Poorani G, Uppuluri S, Uppuluri KB. Formulation, characterization, in vitro and in vivo evaluation of castor oil based self-nano emulsifying levosulpiride delivery systems. J Microencapsul. 2016;33(6):535-43. doi: 10.1080/02652048.2016.1223199. PMID 27599558.

Winarti L. Formulation of self-nanoemulsifying drug delivery system of bovine serum albumin using hlb (hydrophilic-lypophilic balance) approach. Indonesian J Pharm. 2016;27(3):117-27. doi: 10.14499/indonesianjpharm27iss3pp117.

Reddy MS, Sowjanya N. Formulation and in vitro characterization of solid self nano emulsifying drug delivery system (s-snedds) of simvastatin. J Pharm Sci Res. 2015;7:40-8.

Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nano emulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: design, optimization, in vitro and in vivo evaluation. J Molecular Liquids. 2016;218:219-32. doi: 10.1016/j.molliq.2016.02.081.

Suresh PK, Sharma S. Formulation and in vitro characterization of self-nanoemulsifying drug delivery system of cinnarizine. Int J Compr Pharm. 2011;2:1-6.

Taha EI, Ak-Suwayeh SA, Tayel MM, Badran MM. Fast ultra-fine self-nanoemulsifying drug delivery system for improving in vitro gastric dissolution of poor water soluble drug. Acta Pol Pharm. 2015;72(1):171-8. PMID 25850213.

Motulsky HJ, Christopoulos A. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. San Diego: Graphpad software, Incorp; 2003. p. 143-8.

Siswanto A, Fudholi A, Nugroho AK, Martono S. In vitro release modeling of aspirin floating tablets using dsolver. Indonesian J Pharm. 2015;26(2):94-102. doi: 10.14499/ indonesianjpharm26iss2pp94.

Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625-37. doi: 10.1016/j.addr.2007.10.010, PMID 18068260.

Beig A, Miller JM, Dahan A. Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of peg-400 on carbamazepine absorption. Eur J Pharm Biopharm. 2012;81(2):386-91. doi: 10.1016/j.ejpb.2012.02.012, PMID 22387337.

Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (s-snedds) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8(3):1-29. doi: 10.3390/pharmaceutics8030020, PMID 27355963.

Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (snedds) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86(2):327-38. doi: 10.1016/j.colsurfb.2011.04.016, PMID 21550214.

Kaur G, Chandel P, Harikumar SL. Formulation development of self nanoemulsifying drug delivery system (snedds) of celecoxib for improvement of oral bioavailability. Pharmacophore. 2013;4:120-33.

Zhao T. Self-nanoemulsifying drug delivery systems (snedds) for the oral delivery of lipophilic drugs [doctoral thesis]. Italy: University of Trento Department of Industrial Engineering; 2015.

Zaini E, Witarsah AS, Agustin R. Enhancement of dissolution rate of meloxicam by co-grinding technique using hydroxypropyl methylcellulose. J Chem Pharm. 2014;6:263-7.

Jeevana JB, Sreelakshmi K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J Young Pharm. 2011;3(1):4-8. doi: 10.4103/0975-1483.76413, PMID 21607048.

Talele SG, Derle DV. Solubility and thermodynamic modeling of quetiapine fumarate in self nanoemulsifying drug delivery system (SNEDDS). Int J App Pharm. 2018;10(4):127-32. doi: 10.22159/ijap.2018v10i4.25862.

Sastri T, Radha GV. Development of self nanoemulsifying drug delivery system for an antihypertensive agent felodpine: a systematic approach for lipid nanoformulation with improved oral bioavailability in rats. Int J Appl Pharm. 2020;12:86-94.

Danyuo Y, Ani CJ, Salifu AA, Obayemi JD, Dozie-Nwachukwu S, Obanawu VO, Akpan UM, Odusanya OS, Abade-Abugre M, McBagonluri F, Soboyejo WO. Anomalous release kinetics of prodigiosin from poly-n-isopropyl-acrylamid based hydrogels for the treatment of triple-negative breast cancer. Sci Rep. 2019;9(1):3862. doi: 10.1038/s41598-019-39578-4, PMID 30846795.

Gugliuzza A, Drioli E. PVDF and HYFLON AD membranes: ideal interfaces for contactor applications. J Membr Sci. 2007;300(1-2):51-62. doi: 10.1016/j.memsci.2007.05.004.

Published

11-12-2021

How to Cite

AULIA, S., WINARTI, L., & WICAKSONO, Y. (2021). MELOXICAM SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM: FORMULATION AND RELEASE KINETICS ANALYSIS. International Journal of Applied Pharmaceutics, 13(4), 188–193. https://doi.org/10.22159/ijap.2021.v13s4.43856

Issue

Section

Original Article(s)

Most read articles by the same author(s)