INTRANASAL FORMULATION AND CHARACTERIZATION OF CHITOSAN MICROSPHERE FOR IMPROVING IN VITRO MUCOADHESION, RESIDENCE TIME AND ABSORPTION RATE OF PREGABALIN

Authors

  • ANIL PETHE Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India 442001 https://orcid.org/0000-0002-6380-1847
  • ANKIT HADKE Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India 442001 https://orcid.org/0000-0001-7163-0307
  • SURENDRA AGRAWAL Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India 442001 https://orcid.org/0000-0002-1149-5307
  • DARSHAN TELANGE Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India 442001 https://orcid.org/0000-0003-3016-8237

DOI:

https://doi.org/10.22159/ijap.2023v15i1.46359

Keywords:

Chitosan microsphere, pregabalin, intranasal, mucoadhesion, anticonvulsant

Abstract

Objective: Chitosan-based pregabalin microsphere (CBPM) formulation was prepared to improve in vitro mucoadhesion and absorption of pregabalin via intranasal administration. Methods: The CBPM formulations were prepared using the inotropic gelation method and optimized using the Box-Behnken design. The optimized CBPM formulation was physico- chemically characterized using scanning electron microscopy, thermal analysis, Fourier transform infrared spectrometry and powder x-ray diffraction. Additionally, the CBPM formulation was characterized for functional parameters such as in vitro mucoadhesion, in vitro drug release, ex vivo permeability across the sheep nasal mucosa and in vivo anticonvulsant activity in pentylenetetrazol (PTZ)-induced seizures model in mice.

Results: The design-optimized CBPM exhibited a 91.45 % inclusion efficiency of pregabalin in the microspheres. The physico-chemical analysis of the individual components and the optimized formulation confirmed the formation of CBPM. The in vitro mucoadhesion study revealed ~80% mucoadhesive of the CBPM to the sheep nasal mucosa. The in vitro dissolution profiles of CBPM was significantly higher (~97%) than that of pure pregabalin (~70%). The CBPM displayed a higher rate and extent of permeability (~90%) than pure pregabalin (~76%) across the sheep nasal mucosa. Thein vivo anticonvulsant activity showed that intranasal administration of CBPM resulted in significant (P<0.01) protection against PTZ-induced convulsions in mice.

Conclusion: The chitosan-based microsphere intranasal formulation could be employed as promising delivery for rapid pregabalin absorption.

Downloads

Download data is not yet available.

References

Kanwar N, Kumar R, Sarwal A, Sinha VR. Preparation and evaluation of floating tablets of pregabalin. Drug Dev Ind Pharm 2015 Jul 6;42:1-7. doi:10.3109/03639045.2015.1062895.

Comoglu T, Dogan A, Dogan M. Process and formulation variables of pregabalin microspheres prepared by w/o/o double emulsion solvent diffusion method and their clinical application by animal modelling studies. Drug Dev Ind Pharm 2014;41:1311–1320. doi:10.3109/03639045.2014.948452.

Gujral RS, Haque SM, Kumar SA. A novel method for the determination of pregabalin in bulk pharmaceutical formulations and human urine samples. Afr J Pharm Pharmacol2009 Jun;3(6):327–334.

Ben-Manachem E. Pregabalin pharmacology ad its relevance to clinical practice. Epilepsia. 2004 Aug;45(6):13-18. doi:10.1111/j02213-9580.2004.455003.x.

Bockbrader HN, Radulovic LL, Posvar EL. Clinical pharmacokinetics of pregabalin in healthy volunteers. J Clin Pharmacol 2010;50(8):941–950. doi:10.1177/0091270009352087.

Fennerup NB, Jensen TS. Clinical use of pregabalin in the management of central neuropathic pain. Neuropsychiatr Dis Treat 2008 Jan 15;3(6):885-891.doi:10.2147/ndt.s1715.

Arafa MG, Ayoub BM. DOE Optimization of a nano-based carrier of pregabalin as hydrogel: new therapeutic &chemometric approaches for controlled drug delivery systems. Sci Rep2017 Jan 30;7:1–15. doi:10.1038/srep41503.

Fukasawa H, Muratake H, Nagae M. Transdermal administration of aqueous pregabalin solution as a potential treatment option for patients with neuropathic pain to avoid central nervous system-mediated side effects. Biol Pharm Bull 2014 Nov;37(11):1816–1819. doi:10.1248/bpb.b14-00278.

Jeong KH, Woo HS, Kim CJ. Formulation of a modified-release pregabalin tablet using hot-melt coating with glyceryl behenate. Int J Pharm2015;495:1–35. doi:10.1016/j.ijpharm.2015.08.057.

AcikgozM, Kas HS, Orman N,Hincal AA. Chitosan microspheres of diclofenac sodium: I.application of factorial design and evaluation of release kinetics. J Microencapsul 1996 13(2):141–160. doi.10.3109/02652049609052903.

Agnihotri SA, Aminabhavi TM. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release2004;96:245–259. doi:10.1016/j.jconrel.2004.01.025.

Martinac A, Filipovi J. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm 2005 Apr;219(2):69–77. doi:10.1016/j.ijpharm.2004.07.044.

Belgamwar VS, Patel HS, Joshi AS. Design and development of nasal mucoadhesive microspheres containing tramadol HCl for CNS targeting. Drug Deliv 2011;18(5):353–360. doi:10.3109/10717544.2011.557787.

Patel D, Singh S. Chitosan: a multifacet polymer. Int. J. Curr. Pharm 2015;7(2):21-28.

Reddy S, Gupta P, Udupa N.Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of Zidovudine. 2009 Apr 14;26(3):214–222. doi:10.1080/02652040802246325.

Thanoo BC, Sunny MC. Cross-linked chitosan microspheres : preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol1992;44: 283–286. doi:10.1111/j.2042-7158.1992.tb03607.x.

Dhanaraju MD, Elizabeth S, Gunasekaran T. Triamcinolone-loaded glutaraldehyde cross-linked chitosan microspheres : Prolonged-release approach for the treatment of rheumatoid arthritis. Drug Deliv2011;18(3):198–207. doi:10.3109/10717544.2010.528069.

Agrawal M, Saraf S, Saraf S, Antimisiaris SG. Nose-to-brain drug delivery : An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281:139–177. doi:10.1016/j.jconrel.2018.05.011.

Crowe TP, Greenlee MHW, Anumantha G, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci 2017;195:44–52. doi:10.1016/j.lfs.2017.12.025.

Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm2021 Aug 12; 607:120994. doi:10.1016/j.ijpharm.2021.120994.

Pani NR, Acharya S, Patra S. Development and validation of RP-HPLC method for quantification of glipizide in biological macromolecules. Int J Biol Macromol 2014 Jan 10;65:65–71. doi:10.1016/j.ijbiomac.2014.01.007.

Jeffery H, Davis SS, Hagan DTO. The preparation and characterization of poly ( lactide-co-glycolide ) microparticles. I : Oil-in-water emulsion solvent evaporation. Int J Pharm1991;77:169–175. doi:10.1016/0378-5173(91)90314-E.

Ararath D, Velmurugan S. Formulation and evaluation of nevirapine mucoadhesive microspheres. Int J Pharm Pharm Sci 2015; 7(6).342-348.

Sahu V, Sharma N, Sahu P, Saraf S. Formulation and evaluation of floating mucoadhesive microspheres of novel natural polysaccharide for site-specific delivery of ranitidine hydrochloride. Int. J. Appl. Pharm 2017;9(3):15-19.

Velmurugan S, AshrafMA. Preparation and evaluation of maraviroc mucoadhesive microspheres for gastro retentive drug delivery. Int. J. Pharm. Pharm. Sci 2015;7(5):208-214.

Deshmukh M, Mohite S. Formulation and characterization of olanzapine-loaded mucoadhesive microspheres. Asian J Pharm Clin Res 2017;10(4):249-255.doi:10.22159/ajpcr.2017.v10i4.16659.27.

Lal C, Garg R, Gupta GD. Formulation and optimization by applying 32 full factorial designs of mucoadhesive microspheres of nifedipine. Asian J Pharm Clin Res 2019;12(6): doi:10.22159/ajpcr.2019.v12i6.33657.

Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR. Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for Valsartan. J Microencapsul2012;29:103–114. doi:10.3109/02652048.2011.630106.

Tas C, Kose C, Savaser A, Ozkan Y. Nasal absorption of metoclopramide from different Carbopol Ò 981 based formulations : In vitro, ex vivo and in vivo evaluation q. 2006;64:246–254. doi:10.1016/j.ejpb.2006.05.017.

Kasture VS, Kasture SB, Chopde CT. The anticonvulsive activity of Butea monosperma flowers in laboratory animals. Pharmacol Biochem Behav2002;72:965–972. doi: 10.1016/S0091-3057(02)00815-8.

Serralheiro A, Alves G, Fortuna A, Falcão A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm2015;490:39–46. doi: 10.1016/j.ijpharm.2015.05.021.

Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fibre formation. Prog Polym Sci 2009;34:641–678. doi:10.1016/j.progpolymsci.2009.04.001.

Aramwit P, Ekasit S, Yamdech R. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin. Biomed Microdevices 2015 Aug 2;17;1-9. doi:10.1007/s10544-015-9991-4.

Pandey R, Khuller GK. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother 2004;53:635–640. doi:10.1093/jac/dkh139.

Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int J Pharm 1998;168:221–229. doi:10.1016/S0378-5173(98)00092-1.

Kulkarni AD, Bari DB, Surana SJ, Pardeshi C V. In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride. J Drug Deliv Sci Technol2016;31:108–117. doi:10.1016/j.jddst.2015.12.004.

Mohammed MH, Williams PA, Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll 2013;31:166–171. doi:10.1016/j.foodhyd.2012.10.021.

Bhaskarbhai, Jigar, Chandra Has Khanduri Suresh BJ. Polymorphic form I of pregabalin and process for its preparation. United States Pat Appl 2006; 1:1–8.

Pardeshi C V., Belgamwar V. S. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int J Biol Macromol2016;82:933–944. doi: 10.1016/j.ijbiomac.2015.11.012.

Jain SA, Chauk DS, Mahajan HS. Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. J Microencapsul 2009;26:711–721. doi:10.3109/02652040802685241.

Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan - A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011;36:981–1014.

Sahu V, Sharma N, Sahu P, Saraf S. Formulation and evaluation of floating mucoadhesive microspheres of novel natural polysaccharide for site-specific delivery of ranitidine hydrochloride. Int. J. Pharm 2017;9(3):15-19.

Published

21-10-2022

How to Cite

PETHE, A., HADKE, A., AGRAWAL, S., & TELANGE, D. (2022). INTRANASAL FORMULATION AND CHARACTERIZATION OF CHITOSAN MICROSPHERE FOR IMPROVING IN VITRO MUCOADHESION, RESIDENCE TIME AND ABSORPTION RATE OF PREGABALIN. International Journal of Applied Pharmaceutics, 15(1). https://doi.org/10.22159/ijap.2023v15i1.46359

Issue

Section

Original Article(s)