• CHRISTOFORI MARIA RATNA RINI NASTITI Division of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Campus 3 Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, 55282, Indonesia
  • RINI DWIASTUTI Division of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Campus 3 Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, 55282, Indonesia
  • FLORENTINUS DIKA OCTA RISWANTO Division of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Campus 3 Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta, 55282, Indonesia



Quercetin, Nanoemulgel, Optimization, Principal component analysis, Response surface methodology


Objective: This current research aimed to examine the profile of a range of gelling agents by applying principal component analysis (PCA) based on certain physical properties and to develop a novel optimized nanoemulgel formulation containing quercetin (QUE).

Methods: A series of gelling agents with different concentrations were grouped and profiled by applying the PCA based on their viscosity and the spreadability. Based on the profile, one of the gelling agents was selected to be formulated in QUE nanoemulgel. The formulation of QUE nanoemulsion was then fabricated using a spontaneous emulsification method involving triacetin as the oil phase, a combination of Kolliphor® RH 40 and Transcutol® as the surfactant-cosurfactant system, and citrate buffer pH 6 as the aqueous phase. QUE nanoemulgel was fabricated by incorporating the gelling agent (sodium carboxymethylcellulose; Na CMC) into the nanoemulsion. The composition of Kolliphor® RH 40, Transcutol®, and Na CMC in the formulation was further optimized by using Box Behnken Design followed by a response surface methodology provided by Minitab®.

Results: The PCA grouped a range of gelling agents into three principal components (PC) based on the concentration, viscosity and spreadability. The results of PCA showed that Na CMC was the most suitable gelling agent for QUE nanoemulgel. To optimize the QUE nanoemulgel formulation, sixteen runs of BBD were successfully fabricated, providing an optimum-validated composition of 21.45 g, 13.96 g, and 4.00 g for Kolliphor® RH 40, Transcutol®, and Na CMC, respectively, with composite desirability of 0.843.

Conclusion: We successfully conducted gelling agent profiling by providing three types of PC using PCA. An optimized and validated formulation of QUE nanoemulgel was also successfully designed as a potential topical diabetic wound healing formulation.


Download data is not yet available.


Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Front Pharmacol. 2019;10:421. doi: 10.3389/fphar.2019.00421, PMID 31068817.

McKittrick LS, McKittrick JB, Risley TS. Transmetatarsal amputation for infection or gangrene in patients with diabetes mellitus. Ann Surg. 1949;130(4):826-42. doi: 10.1097/00000658-194910000-00019.

Ammendola M, Sacco R, Butrico L, Sammarco G, de Franciscis S, Serra R. The care of transmetatarsal amputation in diabetic foot gangrene. Int Wound J. 2017;14(1):9-15. doi: 10.1111/iwj.12682, PMID 27696694.

Prabhakar PK, Singh K, Kabra D. Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. Phytomedicine. 2020;76:153252. Available from:

Kant V, Jangir BL, Sharma M, Kumar V, Joshi VG. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol Immunotoxicol. 2021 Sep 3;43(5):536-53. doi: 10.1080/08923973.2021.1950758, PMID 34278923.

Badhwar R, Mangla B, Neupane YR, Khanna K, Popli H. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnology. 2021;32(50):505102. doi: 10.1088/1361-6528/ac2536, PMID 34500444.

Polera N, Badolato M, Perri F, Carullo G, Aiello F. Quercetin and its natural sources in wound healing management. Curr Med Chem. 2019;26(31):5825-48. doi: 10.2174/0929867325666180713150626, PMID 30009700.

Jee JP, Pangeni R, Jha SK, Byun Y, Park JW. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int J Nanomedicine. 2019;14:5449-75. doi: 10.2147/IJN.S213883, PMID 31409998.

Yin G, Wang Z, Wang Z, Wang X. Topical application of quercetin improves wound healing in pressure ulcer lesions. Exp Dermatol. 2018;27(7):779-86. doi: 10.1111/exd.13679, PMID 29733461.

Alyoussef A, El-Gogary RI, Ahmed RF, Ahmed Farid OAHA, Bakeer RM, Nasr M. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol. 2021;62:102360. doi: 10.1016/j.jddst.2021.102360.

Ojha B, Jain VK, Gupta S, Talegaonkar S, Jain K. Nanoemulgel: a promising novel formulation for treatment of skin ailments. Polym Bull. 2022;79(7):4441-65. doi: 10.1007/s00289-021-03729-3.

Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736-51. doi: 10.1016/j.xphs.2017.03.042, PMID 28412398.

Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5(10):43-7.

Nastiti CMRR, Ponto T, Mohammed Y, Roberts MS, Benson HAE. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol. Pharmaceutics. 2020;12(2):1-15. doi: 10.3390/pharmaceutics12020108, PMID 32013204.

Nastiti CMRR, Riswanto FDO. Analytical method validation and formula optimization of topical nanoemulsion formulation containing resveratrol. Indones J Chem. 2021;21(5). doi: 10.22146/ijc.63730.

Berdey II, Voyt OI. Rheological properties of emulgel formulations based on different gelling agent. J Pharm Innov. 2016;5(4B):76.

Singh MP, Nagori BP, Shaw NR, Tiwari M, Jhanwar B. Formulation development and evaluation of topical gel formulations using different gelling agents and its comparison with marketed gel formulation. Int J Pharm Erud. 2013;3(3):1-10.

Rathod HJ, Mehta DP. A review on pharmaceutical gel. Int J Pharm Sci. 2015;1(1):33-47.

Pal R. Modeling the viscosity of concentrated nanoemulsions and nanosuspensions. Fluids. 2016;1(2):11. doi: 10.3390/fluids1020011.

Gabel J, Desaphy J, Rognan D. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J Chem Inf Model. 2014;54(10):2807-15. doi: 10.1021/ci500406k, PMID 25207678.

Setyawan EI, Rohman A, Setyowati EP, Nugroho AK. The combination of simplex lattice design and chemometrics in the formulation of green tea leaves as transdermal matrix patch. Pharmacia. 2021;68(1):275-82. doi: 10.3897/pharmacia.68.e61734.

Florentinus DOR, Abdul R, Suwidjiyo P, Sudibyo M. Application of response surface methodology as mathematical and statistical tools in natural product research; 2019.

Garg A, Aggarwal D, Garg S, Singla KA. Spreading of semisolid formulations: an update. Pharm Technol. 2002;26(9):84-105.

Dwiastuti R, Suhendra PA, Yuliani SH, Octa FDR. Application of the central composite design approach for optimization of the nanosilver formula using a natural bioreductor from Camellia sinensis L. extract. J Appl Pharm Sci. 2022;12(8):48-56. doi: 10.7324/JAPS.2022.120806.

Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed Pharmacother. 2019;112:108622. doi: 10.1016/j.biopha.2019.108622, PMID 30797146.

Bohidar NR, Restaino FA, Schwartz JB. Selecting key parameters in pharmaceutical formulations by principal component analysis. J Pharm Sci. 1975 Jun 1;64(6):966-9. doi: 10.1002/jps.2600640615, PMID 1133752.

Armstrong NA. Pharmaceutical experimental design and interpretation. CRC Press; 2006.

Oh CM, Heng PWS, Chan LW. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis. AAPS PharmSciTech. 2015;16(2):466-77. doi: 10.1208/s12249-014-0204-x, PMID 25370022.

Fujiwara T, Kwon OH, Ma KL. Supporting analysis of dimensionality reduction results with contrastive learning. IEEE Trans Vis Comput Graph. 2020;26(1):45-55. doi: 10.1109/TVCG.2019.2934251, PMID 31425080.

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Phil Trans R Soc A. 2016;374(2065):1-16. doi: 10.1098/rsta.2015.0202.

Bashir M, Ahmad J, Asif M, Khan SU, Irfan M, Y Ibrahim A. Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: in vitro and in vivo evaluation. Int J Nanomedicine. 2021;16:1457-72. doi: 10.2147/IJN.S294653, PMID 33654396.

Sapiun Z, Wicita PS, Buloto AS, Kamba V, Imran AK, Buana WAA. Preparation and characterization of butterfly pea (Clitoria ternatea L.) nanoemulgel. Open Access Maced J Med Sci. 2022 Apr 14;10(A):585-9. doi: 10.3889/

Morsy MA, Abdel-Latif RG, Nair AB, Venugopala KN, Ahmed AF, Elsewedy HS. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics. 2019;11(11):609. doi: 10.3390/pharmaceutics11110609, PMID 31766305.

Saryanti D, Setiawan I, Dayanto HH. Use of CMC Na as gelling agent in nanoemulgel formulation of methanol extract of sappan wood (Caesalpinia sappan L). J Trop Pharm Chem. 2022;6(1):21-9. doi: 10.25026/jtpc.v6i1.276.

Riswanto FDO, Desra A, Sari RM, Thomas V, Rohman A, Pramono S. Employing an R software package rsm for optimizing of genistein, daidzein, and glycitein separation and its application for soy milk analysis by HPLC method. Indones J Chem. 2020;20(5):1184-98. doi: 10.22146/ijc.51669.

Prabaningdyah NK, Riyanto S, Rohman A, Siregar C. Application of HPLC and response surface methodology for simultaneous determination of curcumin and desmethoxy curcumin in Curcuma syrup formulation. J Appl Pharm Sci. 2017;7(12):58-64.

Dwiastuti R, Putri DCA, Hariono M, Riswanto FDO. Multiple response optimization of a HPLC method for analyzing resorcinol and 4-n-butyl resorcinol in lipid nanoparticles. Indones J Chem. 2021;21(2):502-11. doi: 10.22146/ijc.58537.

Patel MN, Kothari CS. Multivariate approaches for simultaneous determination of avanafil and dapoxetine by UV chemometrics and HPLC-QbD in binary mixtures and pharmaceutical product. J AOAC Int. 2016;99(3):649-63. doi: 10.5740/jaoacint.15-0259.

Muralikrishna P, Babu AK, Mamatha P. Formulation and optimization of ceritinib loaded nanobubbles by box-behnken design. Int J App Pharm. 2022;14(4):219-26. doi: 10.22159/ijap.2022v14i4.44388.

Candioti LV, De Zan MM, Camara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014;124:123-38. doi: 10.1016/j.talanta.2014.01.034, PMID 24767454.

Iftikhar SY, Iqbal FM, Hassan W, Nasir B, Sarwar AR. Desirability combined response surface methodology approach for optimization of prednisolone acetate loaded chitosan nanoparticles and in vitro assessment. Mater Res Express. 2020 Nov;7(11):115004. doi: 10.1088/2053-1591/abc772.

Modi DM, Modi AD, Parikh RH, Parikh JR. Preparation, characterization, and optimization of mebendazole spherical agglomerates using modified evaporative precipitation in aqueous solution (EPAS). Int J Pharm Pharm Sci 2022;14(9):30-8. doi: 10.22159/ijpps.2022v14i9.44728.

Shaikh AA, Chaudhari PD, Holkar SS. A design of experiment approach for optimization and characterization of etodolac ternary system using spray drying. Int J Pharm Pharm Sci 2017;9(2):233-40. doi: 10.22159/ijpps.2017v9i2.16087.



How to Cite




Original Article(s)