NICORANDIL MUCOADHESIVE MICROSPHERES: FORMULATION DEVELOPMENT, PHYSICO-CHEMICAL AND FUNCTIONAL CHARACTERIZATION

Authors

  • ANKITA V. HADKE Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India https://orcid.org/0000-0001-7163-0307
  • ANIL M. PETHE Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (Meghe), Wardha, Maharashtra, India https://orcid.org/0000-0002-6380-1847
  • MAHESH A. KESALKAR Institute of Pharmaceutical Education and Research, Wardha, Maharashtra, India https://orcid.org/0000-0001-7869-3247

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46593

Keywords:

.

Abstract

Objective: The study aims to prepare and evaluate Nicorandil mucoadhesive microspheres to improve the oral physicochemical properties of nicorandil and mucoadhesion to extend the residence time at the absorption site.

Methods: Nicorandil mucoadhesive microsphere was prepared by emulsion cross-linking method using fenugreek gum, karaya gum as polymer, and glutaraldehyde as a cross-linking agent. Drug entrapment efficiency, particle size, % swelling index, mucoadhesion study, differential scanning calorimetry, powder x-ray diffraction, Fourier transform infrared spectroscopy, and in-vitro dissolution studies were used to characterize the microspheres.

Results: The characterization studies indicated the formation of mucoadhesive microspheres. The nicorandil mucoadhesive microspheres particle size is130.83±0.48, entrapment efficiency 66.91±0.54, swelling index 82.69±0.40, % mucoadhesion 95.22±0.13 and in-vitro drug release was found to be 89.96±0.17 % at the end of 12 hrs.

Conclusion: This research work successfully formed nicorandil mucoadhesive microspheres formulation using the emulsion cross-linking method. Encapsulation efficiency and other physicochemical and functional characterization of microspheres suggested the successful formation of nicorandil mucoadhesive microspheres.

Downloads

Download data is not yet available.

References

Ahmed LA. Nicorandil: A drug with ongoing benefits and different mechanisms in various diseased conditions. Indian J Pharmacol 2019 Oct; 51(5): 296–301. doi:10.4103/ijp.IJP_298_19.

Roland E. Safety profile of an anti-anginal agent with potassium channel opening activity: An overview. Eur Heart J1993;14:48-52.

Vinod R. Formulation and evaluation of nicorandil sustained releasematrix tablets using natural gum Mangifera Indica as release modifier. Asian j. Biomed. pharm. sci 2013;3(18):54-60.

PatelSS, PatelMR, Patel MJ. Formulation and evaluation of microsponge-based nicorandil sustained released tablet. J. Sci. Res 2017;9(3):285-296. doi:10.3329/jsr.v9i3.31193.

HiremathJG, ValluruR, NarhareJ, KattaSA, MatadP. Pharmaceutical aspects of Nicorandil. Int J Pharm and Pharm Sci 2010;2(4):24¬29.

Patel SS,Patel MR,Patel MJ. Formulation and evaluation of microsponge-based nicorandil sustained released tablet. J. Sci. Res 2017;9(3):285-296.

Singh B, Garg T, Goyal A, Rath G. Development, optimization, and characterization of polymeric electrospun nanofiber: a new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif Cells Nanomed Biotechnol 2015 Jul;44: 1-10.doi: 10.3109/21691401.2015.1052472.

Dnyanesh N, Vavia P. Formulation optimization and stability study of transdermal therapeutic system of nicorandil. Pharm Dev Technol 2002;7(3),325–332.

Sumaiya Fathima Barveen K M, Elango K, Ramesh Kumar K, Ramprabhu R V. Development and characterization of Nicorandil loaded maltodextrin based proniosomes. World J Pharm Sci 2017; 5(6): 243-252.

Saha N, Hasan I, Nazmi M, Reza S. Design and development of sustained release microspheres of ibuprofen by emulsification solvent evaporation method using polymeric blend. Bangladesh pharm. J 2013;16(1):39-44.

Kadam NR, Suvarna V. Microspheres: A brief review. Asian j. Biomed. pharm. sci 2015;5(47):13-19. doi: 10.15272/ajbps. v5i47.713.

Rai A, Malviya RK, Patidar D. Formulation development and evaluation of gastro retentive delivery system (microspheres) using natural polymer. J. Drug Deliv Ther2019 Jul 15; 9(4):496-503.

Sahu VK, Sharma N, Sahu PK, Saraf A. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site-specific delivery of ranitidine hydrochloride. Int. J. Appl. Pharm 2017;9(3):15-19. doi:10.22159/ijap.2017v9i3.16137.

Marina K, Ansu J, Prabhakara P, Girish SN. Mucoadhesive microspheres of famotidine for gastro retentive drug delivery. Int J Drug Dev Res 2012; 4:59-64.

Telange DR, Denge R, Patil AT, Umekar MJ, Gupta SV, Dave VS. Pentaerythritol as an excipient/solid dispersion carrier for improved solubility and permeability of ursodeoxycholic acid. J Excip Food Chem 2018 Sept;9(3):80-95.

Hemant KSY, Singh MN, Shivakumar HG. Chitosan/Sodium tripolyphosphate cross-linked microspheres for the treatment of gastric ulcer. Pharm Lett 2010; 2:106-13.

Hari PR, Chandy T, Sharma CP. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J Microencapsulation 1996; 13:319-29.

Dinarvand R, Rahmani E, Farbod E. Gelatin microspheres for the controlled release of all –trans-retinoic acid topical formulation and drug delivery evaluation. Iran J Pharm Res. 2010; 2:47-50.

Patel K, Patel M, Ajmera A, Patel P, Rathod K. Formulation and evaluation of nicorandil microspheres. Int. J. Pharm. Pharm. Sci 2013;5(2):593-597.

Rad RT, Mortazavi SA, Vatanara A, Dadashzadeh S. Enhanced dissolution rate of tadalafil nanoparticles prepared by sonoprecipitation technique: optimization and physicochemical investigation. Iran J Pharm Res2017;6(4):1335-1348. PMID: 29721025; PMCID: PMC5843297.

Deshmukh M, Mohite S. Formulation and characterization of olanzapine-loaded mucoadhesive microspheres. Asian J Pharm Clin Res 2017;10(4):249-255. doi:10.22159/ajpcr. 2017.v10i4.16659.27.

Rastogi R, Sultana Y, Aqil M, Ali A, Kumar S, Chuttani K, et al. Alginate microspheres of isoniazid for oral sustained drug delivery. Int J Pharm. 2007; 334:71–7.

Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 2004;27, 1–12. doi:10.1007/BF02980037.

Rajinikanth PS, Sankar C, Mishra B. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery: Development and evaluation. Drug Deliv J Deliv Target Ther Agents. 2003; 10:21–8.

Sharma N, Kulkarni GT, Sharma A, Bhatnagar A, Kumar N. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery. J Microencapsul2013; 30:589-98.

Nayak A, Pal D, Pradhan J, Hasnain MS. Fenugreek seed mucilage alginate mucoadhesive beads of metformin HCL: Design, optimization and evaluation. Int. J. Biol. Macromol 2013 Mar; 54: 144-154.

Lal C, Garg R, Gupta GD, Formulation and optimization by applying 32 full factorial design of mucoadhesive microspheres of nifedipine. Asian J Pharm Clin Res 2019;12(6): 321-327.

Adimoolam S, Phonhaxa S. Trigonella-foenum graecum l. seed mucilage-based mucoadhesive microspheres of diclofenac sodium. J. Anal. Pharm. Res 2018 Mar;7(2):114-119. doi: 10.15406/japlr.2018.07.00210.

Biswal B, Parmar H, Nayak J. Design development and evaluation of buccal tablet containing nicorandil as a model drug. Asian J Pharm Clin Res 2014;8(2): 102-106.

Published

22-12-2022

How to Cite

HADKE, A. V., PETHE, A. M., & KESALKAR, M. A. (2022). NICORANDIL MUCOADHESIVE MICROSPHERES: FORMULATION DEVELOPMENT, PHYSICO-CHEMICAL AND FUNCTIONAL CHARACTERIZATION. International Journal of Applied Pharmaceutics, 15(2). https://doi.org/10.22159/ijap.2023v15i2.46593

Issue

Section

Original Article(s)