• DARSHAN R. TELANGE Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Sawangi (Meghe) Wardha. 442001, Maharashtra, India https://orcid.org/0000-0003-3016-8237
  • SURENDRA S. AGRAWAL Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Sawangi (Meghe) Wardha. 442001, Maharashtra, India https://orcid.org/0000-0002-1149-5307
  • ANIL M. PETHE Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Sawangi (Meghe) Wardha. 442001, Maharashtra, India https://orcid.org/0000-0002-6380-1847
  • ANKITA V. HADKE Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Sawangi (Meghe) Wardha. 442001, Maharashtra, India https://orcid.org/0000-0001-7163-0307




Atorvastatin, Co-processed excipients, Eudragit®RS100, Pentaerythritol, Solid dispersion


Objective: To improve ATN's solubility, permeability, and dissolution rate of pentaerythritol-eudragit®RS100 co-processed excipients (CE) and their potential as a solid dispersion carrier (ATN-CE-SD).

Methods: The ATN-CE-SD was prepared using the solvent evaporation technique. The pure ATN, physical mixture, CE carrier, and optimized ATN-CE-SD was physicochemically characterized using Scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, powder x-ray diffractometry, solubility, and in vitro dissolution was used to evaluate solid dispersions.

Results: Physical and chemical analysis showed that ATN-CE-SD formed via the involvement of weak intermolecular forces of attraction between CE carrier and ATN. The prepared solid dispersion showed the drug content around ~ 96.94 % w/w, indicating that the solvent evaporation method improved the encapsulation of ATN and, thus, enhanced its drug content. Compared to pure ATN (~ 0.11 mg/ml), ATN-CE-SD (1:2) significantly increased the aqueous solubility by around ~ 25-fold (~ 2.78 mg/ml), indicating solid dispersion improves the solubility of ATN. ATN-CE-SD enhanced the rate of dissolution of ATV (~ 65 %) compared to pure ATN (~ 25 %) and PM (~ 34 %). Likewise, ATN-CE-SD (1:2) improved the rate and extent of ATN (~ 60 %) across the biological membrane compared to pure ATN (~ 22 %) and PM (~ 32 %). The ATN-CE-SD (1:2) improved the dissolution efficiency by around ~ (57.31%) compared to pure ATN (~ 7.02%) and PM (~ 20.43%). According to the study, co-processed excipients could serve as a promising solid dispersion carrier and improve ATN's water solubility, permeability, and dissolution rate.

Conclusion: Based on the results, it is possible to use synthetic solid dispersion carriers as alternatives to improve the low water solubility and permeability of ATN.


Download data is not yet available.


Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, ex vivo, and in vivo studies. BioMed Res Int. 2014 Jun 14;2014:463895. doi: 10.1155/2014/463895, PMID 24995297.

Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010 Jun;11(2):598-609. doi: 10.1208/s12249-010-9419-7, PMID 20352531.

Pusapati RT, Kumar MK, Rapeti SS, Murthy T. Development of co-processed excipients in the design and evaluation of atorvastatin calcium tablets by direct compression method. Int J Pharm Investig. 2014 Apr;4(2):102-6. doi: 10.4103/2230-973X.133059, PMID 25006555.

Jahangiri A, Barzegar Jalali M, Javadzadeh Y, Hamishehkar H, Adibkia K. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method. Artif Cells Nanomed Biotechnol. 2017 Sep;45(6):1-8. doi: 10.1080/21691401.2016.1202262, PMID 27406894.

Shaker MA. Dissolution and bioavailability enhancement of atorvastatin: Gelucire semi-solid binary system. J Drug Deliv Sci Technol. 2018;43:178-84. doi: 10.1016/j.jddst.2017.10.003.

Sharma M, Mehta I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci Rep. 2019 Nov 19;9(1):16105. doi: 10.1038/s41598-019-52645-0, PMID 31695118.

Faraji E, Mohammadi M, Mahboobian MM. Development of the binary and ternary atorvastatin solid dispersions: in vitro and in vivo investigations. BioMed Res Int. 2021 Sep 6;2021:6644630. doi: 10.1155/2021/6644630, PMID 34527740.

Apeji YE, Oyi AR, Isah AB, Allagh TS, Modi SR, Bansal AK. Development and optimization of a starch-based co-processed excipient for direct compression using mixture design. AAPS PharmSciTech. 2018 Feb;19(2):866-80. doi: 10.1208/s12249-017-0887-x, PMID 29038987.

Saha S, Shahiwala AF. Multifunctional co-processed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009 Feb;2(6):197-208.

Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm. 2007;66(3):334-47. doi: 10.1016/j.ejpb.2006.11.020. PMID 17267194.

Bikiaris D, Papageorgiou GZ, Stergiou A, Pavlidou E, Karavas E, Kanaze F. Physicochemical studies on solid dispersions of poorly water-soluble drugs: evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005:58-67. doi: 10.1016/j.tca.2005.09.011.

Al-Hamidi H, Edwards AA, Mohammad MA, Nokhodchi A. To enhance dissolution rate of poorly water-soluble drugs: glucosamine hydrochloride as a potential carrier in solid dispersion formulations. Colloids Surf B Biointerfaces. 2010;76(1):170-8. doi: 10.1016/j.colsurfb.2009.10.030. PMID 19945828.

Surini S, Evangelista CN, Iswandana R. Development of glimepiride solid dispersion using the coprocessed excipients of polyvinylpyrrolidone, maltodextrin, and polyethylene glycol. J Young Pharm. 2018 Jul;10(2s):S45-50. doi: 10.5530/jyp.2018.2s.9.

Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J Pharm Sci. 1969 Dec;58(12):1505-10. doi: 10.1002/jps.2600581218, PMID 5353269.

Adibkia K, Javadzadeh Y, Dastmalchi S, Mohammadi G, Niri FK, Alaei Beirami M. Naproxen-eudragit RS100 nanoparticles: preparation and physicochemical characterization. Colloids Surf B Biointerfaces. 2011 Nov 18;83(1):155-9. doi: 10.1016/j, PMID 21130612.

Barzegar Jalali M, Alaei Beirami M, Javadzadeh Y, Mohammadi G, Hamidi A, Andalib S. Comparison of physicochemical characteristics and drug release of diclofenac sodium-eudragit®. Powder Technol; RS100 Nanoparticles and Solid Dispersions. 2012 Mar;219:211–6. doi: 10.1016/j.powtec.2011.12.046.

Chaheen M, Sanchez Ballester NM, Bataille B, Yassine A, Belamie E, Sharkawi T. Development of coprocessed chitin-calcium carbonate as multifunctional tablet excipient for direct compression. J Pharm Sci. 2018 Aug;107(8):2152-9. doi: 10.1016/j.xphs.2018.04.013, PMID 29698724.

Kaur L, Kaur T, Singh A, Singh A. Formulation development and solubility enhancement of rosuvastatin calcium by using hydrophilic polymers and solid dispersion method. Int J Curr Pharm. 2021;13(6):50-5.

Sahu VK, Sharma N, Sahu PK, Saraf SA. Formulation and evaluation of floating-mucoadhesive microspheres of novel natural polysaccharide for site specific delivery of ranitidine hydrochloride. Int J App Pharm. 2017;9(3):15-9. doi: 10.22159/ijap.2017v9i3.16137.

Deshmukh MT, Mohite SK. Formulation and characterization of olanzepineloaded mucoadhesive microspheres. Asian J Pharm Clin Res 2017;10(4). doi: 10.22159/ajpcr.2017.v10i4.16659.

Velmurugan S, Ashraf MA. Preparation and evaluation of maravirocmucoadhesive microspheres for gastro retentive drug delivery. Int J Pharm Pharm Sci. 2015;7(5):208-14.

El-Assal MI, Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative Alzheimer; in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022;14(1):17-27. doi: 10.22159/ijpps.2022v14i1.43145.

Lal K, Purohit A, Ram H. Glucose homeostatic and pancreas protective potential of tecomella undulata root extract in streptozotocin induced diabetic rats. Asian J Pharm Clin Res 2017;10(6). doi: 10.22159/ajpcr.2017.v10i6.17997.

Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol. 2017;22(1):90-102. doi: 10.1080/10837450.2016.1193193, PMID 27291246.

Dhore PW, Dave VS, Saoji SD, Gupta D, Raut NA. Influence of carrier (Polymer) type and drug-carrier ratio in the development of amorphous dispersions for solubility and permeability enhancement of ritonavir. J Excipients Food Chem. 2017;8(3):75-92.

Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012 Jan;65(1):13-7. doi: 10.1016/j.vascn.2011.11.001. PMID 22107724.

Kim JS, Kim MS, Park HJ, Jin SJ, Lee S, Hwang SJ. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008 Jul;359(1-2):211-9. doi: 10.1016/j.ijpharm.2008.04.006. PMID 18501538.

Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharmaceutica Sinica B. 2012;2(4):421-8. doi: 10.1016/j.apsb.2012.05.002.

Iqbal R, Qureshi OS, Yousaf AM, Raza SA, Sarwar HS, Shahnaz G. Enhanced solubility and biopharmaceutical performance of atorvastatin and metformin via electrospun polyvinylpyrrolidone-hyaluronic acid composite nanoparticles. Eur J Pharm Sci. 2021 Jun 1;161:105817. doi: 10.1016/j.ejps.2021.105817. PMID 33757829.

Kamran M, Khan MA, Shafique M, Rehman Mu, Ahmed W, Abdullah. Development and characterization of binary solid lipid nano suspension of atorvastatin: in vitro drug release and in vivo pharmacokinetic studies. Nanosci Nanotechnol. 2019 Nov;11(11):1522-30. doi: 10.1166/nnl.2019.3039.

Balcerowiak W. Comments on pentaerythritol DSC. J Therm Anal. 1996 Jun;46(6):1881-3. doi: 10.1007/BF01980791.

Alshaya HA, Alfahad AJ, Alsulaihem FM, Aodah AH, Alshehri AA, Almughem FA. Fast-dissolving nifedipine and atorvastatin calcium electrospun nanofibers as a potential buccal delivery system. Pharmaceutics. 2022 Feb 4;14(2):358. doi: 10.3390/pharmaceutics14020358, PMID 35214093.

Golderg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV. J Pharm Innov. 1995:307-14.

Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III. J Pharm Sci. 1966 May;55(5):487-92. doi: 10.1002/jps.2600550508.



How to Cite

TELANGE, D. R., AGRAWAL, S. S., PETHE, A. M., & HADKE, A. V. (2023). ENHANCED AQUEOUS SOLUBILITY AND IN VITRO DISSOLUTION OF THE ANTI-HYPERLIPIDEMIC AGENT USING SYNTHESIZED SOLID DISPERSION CARRIER. International Journal of Applied Pharmaceutics, 15(1), 121–130. https://doi.org/10.22159/ijap.2023v15i1.46657



Original Article(s)