MOLECULAR DOCKING INSIGHTS INTO PROBIOTICS AS POTENTIAL INHIBITORS OF THE PI3K PATHWAY FOR COLON CANCER THERAPY
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52436Keywords:
Phosphoinositide 3-kinases (PI3Ks), Molecular docking, MM-GBSA, ADME, Cancer, Probiotics, Bacteriocins, Anti-cancer agentsAbstract
Objective: This study investigates the interactions of probiotics-derived bacteriocins with Phosphoinositide 3-kinases (PI3Ks), a key enzyme involved in cell growth and survival pathways, with a focus on the cancer-associated PI3K pathway (PDB ID: 1E8X). The aim is to explore the anti-cancer potential of these bacteriocins as inhibitors of the PI3K catalytic subunit.
Methods: Using the Glide module, the study first involved molecular docking of bacteriocins. Next, an Absorption, Distribution, Metabolism, and Excretion (ADME) study was conducted using Qikprop. The Prime Molecular Mechanics Generalised Born Surface Area (MM-GBSA) method was used to calculate binding free energy.
Results: Five bacteriocins demonstrated significant binding affinity and interactions, including hydrogen and hydrophobic bonds, with key residues such as Tyr867, Trp812, Asp950, Asn951, Lys802, Lys890, Lys833, Val882, Ser806, Thr886, and Gln893 in the PI3K catalytic subunit (PDB ID: 1E8X). Among these, Plantaricin D exhibited an excellent XP-docking score of-7.47 kcal/mol, indicating strong binding potential. Prime MM-GBSA analysis revealed promising binding affinities with ΔBind (-92.85 kcal/mol), ΔLipo (-65.81 kcal/mol), and ΔVdW (-47.34 kcal/mol). The ligand consistently interacted with residues Asp950, Lys890, Gln893, Ser894, Thr887, Ala885, Tyr757, Asp758, Lys802, and Val759.
Conclusion: Plantaricin D bacteriocin, characterized by functional groups including the primary amine (NH₂), carbonyl (C=O), hydroxide (OH), and oxygen (O), demonstrates significant potential as a PI3K inhibitor. This suggests its promising application as an anti-cancer agent, particularly for colon cancer.
Downloads
References
Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381-405. doi: 10.1016/j.cell.2017.04.001, PMID 28431241.
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. doi: 10.1126/science.296.5573.1655, PMID 12040186.
Quinto EJ, Jimenez P, Caro I, Tejero J, Mateo J, Girbes T. Probiotic lactic acid bacteria: a review. Food Nutr Sci. 2014;5(18):1765-75. doi: 10.4236/fns.2014.518190.
Cotter PD, Ross RP, Hill C. Bacteriocins a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95-105. doi: 10.1038/nrmicro2937, PMID 23268227.
Huong TT, Ngoc LN, Kang H. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. Int J Mol Sci. 2020;21(18):6707. doi: 10.3390/ijms21186707, PMID 32933187.
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin LY294002 quercetin myricetin and staurosporine. Mol Cell. 2000;6(4):909-19. doi: 10.1016/s1097-2765(05)00089-4, PMID 11090628.
Gadewar M, Lal B. Molecular docking and screening of drugs for 6lu7 protease inhibitor as a potential target for COVID-19. Int J App Pharm. 2022;14(1):100-5. doi: 10.22159/ijap.2022v14i1.43132.
Pant K, Karpel RL, Rouzina I, Williams MC. Mechanical measurement of single molecule binding rates: kinetics of DNA helix destabilization by T4 gene 32 protein. J Mol Biol. 2004;336(4):851-70. doi: 10.1016/j.jmb.2003.12.025, PMID 15095865.
Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des. 2006 Jan;67(1):83-4. doi: 10.1111/j.1747-0285.2005.00327.x, PMID 16492153.
Harder E, Damm W, Maple J, WU C, Reboul M, Xiang JY. Opls3: a force field providing broad coverage of drug like small molecules and proteins. J Chem Theory Comput. 2016 Jan 12;12(1):281-96. doi: 10.1021/acs.jctc.5b00864, PMID 26584231.
Procacci P. Methodological uncertainties in drug receptor binding free energy predictions based on classical molecular dynamics. Curr Opin Struct Biol. 2021 Apr;67:127-34. doi: 10.1016/j.sbi.2020.08.001, PMID 33220532.
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT. Glide: a new approach for rapid accurate docking and scoring. 1 Method and assessment of docking accuracy. J Med Chem. 2004 Mar 1;47(7):1739-49. doi: 10.1021/jm0306430, PMID 15027865.
Jayanthi K, Ahmed SS, Baqi MA, Afzal Azam MA. Molecular docking dynamics of selected benzylidene aminophenyl acetamides as TMK inhibitors using high throughput virtual screening (HTVS). Int J App Pharm. 2024;16(3):290-7. doi: 10.22159/ijap.2024v16i3.50023.
Divyashri G, Krishna Murthy TP, Sundareshan S, Kamath P, Murahari M, Saraswathy GR. In silico approach towards the identification of potential inhibitors from Curcuma amada Roxb against H. pylori: ADMET screening and molecular docking studies. Bioimpacts. 2021;11(2):119-27. doi: 10.34172/bi.2021.19, PMID 33842282.
Mulakala C, Viswanadhan VN. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? J Mol Graph Model. 2013 Nov;46:41-51. doi: 10.1016/j.jmgm.2013.09.005, PMID 24121518.
Leroy F, DE Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004;15(2):67-78. doi: 10.1016/j.tifs.2003.09.004.
Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV. Purification and characterization of the bacteriocin produced by lactobacillus sakei MBSa1 isolated from brazilian salami. J Appl Microbiol. 2014;116(5):1195-208. doi: 10.1111/jam.12438, PMID 24506656.
Lewus CB, Montville TJ. Further characterization of bacteriocins plantaricin BN bavaricin MN and pediocin A. Food Biotechnol. 1992;6(2):153-74. doi: 10.1080/08905439209549829.
Aasen IM, Markussen S, Moretro T, Katla T, Axelsson L, Naterstad K. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol. 2003;87(1-2):35-43. doi: 10.1016/s0168-1605(03)00047-3, PMID 12927705.
Hanzelik PP, Gergely S, Gaspar C, Gyory L. Machine learning methods to predict solubilities of rock samples. J Chemom. 2020;34(2):e3198. doi: 10.1002/cem.3198.
Kumari R, Kumar R, Open Source Drug Discovery Consortium, Lynn A. G-mmpbsa a gromacs tool for high throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-62. doi: 10.1021/ci500020m, PMID 24850022.
Wencewicz TA. New antibiotics from natures chemical inventory. Bioorg Med Chem. 2016;24(24):6227-52. doi: 10.1016/j.bmc.2016.09.014, PMID 27658795.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.
Redhu S, Jindal A. Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci. 2013;21:55.
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers. 2020;12(6):1579. doi: 10.3390/cancers12061579, PMID 32549302.
Zhivkova Z. Quantitative structure pharmacokinetics modeling of the unbound clearance for neutral drugs. Int J Curr Pharm Sci. 2018;10(2):56-9. doi: 10.22159/ijcpr.2018v10i2.25849.
R Pounikar A, J Umekar M, R Gupta K. Genotoxic impurities: an important regulatory aspect. Asian J Pharm Clin Res. 2020;13(6):10-25. doi: 10.22159/ajpcr.2020.v13i6.37370.
Thiyam R, Narasu ML. Evaluation of cytotoxic and genotoxic effects of zerumbone on colon adenocarcinoma COLO205 cells and human lymphocytes. Int J Pharm Pharm Sci. 2017;9(10):92-6. doi: 10.22159/ijpps.2017v9i11.21120.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Mohd Abdul Baqi
This work is licensed under a Creative Commons Attribution 4.0 International License.