MOLECULAR DOCKING INSIGHTS INTO PROBIOTICS SAKACIN P AND SAKACIN A AS POTENTIAL INHIBITORS OF THE COX-2 PATHWAY FOR COLON CANCER THERAPY

Authors

  • MOHD ABDUL BAQI Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • KOPPULA JAYANTHI Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0003-9358-4278
  • RAMAN RAJESHKUMAR Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i1.52476

Keywords:

COX-2 enzyme, Molecular docking, MM-GBSA, ADME, Cancer, Probiotics, Bacteriocins, Anti-cancer agents

Abstract

Objective: This study aims to explore the interactions between probiotics-derived bacteriocins and the COX (cyclooxygenase) pathway, particularly focusing on the cancer-associated COX-2 (cyclooxygenase-2) enzyme (PDB ID: 6COX). The goal is to assess the potential of these bacteriocins as inhibitors of COX-2, investigating their possible anti-cancer effects through modulation of this key enzyme involved in cell growth and survival pathways.

Methods: Using the Glide module, the study first involved the molecular docking of bacteriocins. Next, an Absorption, Distribution, Metabolism, and Excretion (ADME) study was conducted using Qikprop. The Prime Molecular Mechanics Generalised Born Surface Area (MM-GBSA) method was used to calculate binding free energy.

Results: Four bacteriocins demonstrated significant binding affinity and interactions, including hydrogen and hydrophobic bonds, with key residues such as Tyr385, Ser530, Tyr355, Arg120, Phe518, and Leu352, in the associated COX-2 enzyme(PDB ID: 6COX). Among these, Sakacin P exhibited an excellent XP-docking score of-6.73 kcal/mol, indicating strong binding potential. Prime MM-GBSA analysis revealed promising binding affinities with ΔBind (-90.85 kcal/mol), ΔLipo (-64.81 kcal/mol), and ΔVdW (-46.34 kcal/mol). The ligand consistently interacted with residues Tyr355, and Arg120.

Conclusion: Sakacin P bacteriocin, characterized by functional groups including the primary amine (NH₂), and oxygen (O), demonstrates significant potential as a COX-2 enzyme inhibitor. This suggests its promising application as an anti-cancer agent, particularly for colon cancer.

Downloads

Download data is not yet available.

References

Smith WL, DE Witt DL, Garavito RM. Cyclooxygenases: structural cellular and molecular biology. Annu Rev Biochem. 2000 Jun;69(1):145-82. doi: 10.1146/annurev.biochem.69.1.145, PMID 10966456.

Ghosh N, Chaki R, Mandal V, Mandal SC. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 2010 Mar;62(2):233-44. doi: 10.1016/s1734-1140(10)70262-0, PMID 20508278.

Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA. 1992 Aug 15;89(16):7384-8. doi: 10.1073/pnas.89.16.7384, PMID 1380156.

Wang D, DU Bois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181-93. doi: 10.1038/nrc2809, PMID 20168319.

Deb PK, Mailabaram RP, Al Jaidi B, Saadh M. Molecular basis of binding interactions of NSAIDs and computer-aided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors. Nonsteroidal Anti-Inflamm Drugs. 2017;2:64. doi: 10.5772/Intechopen.68318.

Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin LY294002 quercetin myricetin and staurosporine. Mol Cell. 2000;6(4):909-19. doi: 10.1016/s1097-2765(05)00089-4, PMID 11090628.

Gadewar M, Lal B. Molecular docking and screening of drugs for 6lu7 protease inhibitor as a potential target for COVID-19. Int J App Pharm. 2022;14(1):100-5. doi: 10.22159/ijap.2022v14i1.43132.

Pant K, Karpel RL, Rouzina I, Williams MC. Mechanical measurement of single molecule binding rates: kinetics of DNA helix destabilization by T4 gene 32 protein. J Mol Biol. 2004;336(4):851-70. doi: 10.1016/j.jmb.2003.12.025, PMID 15095865.

Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des. 2006 Jan;67(1):83-4. doi: 10.1111/j.1747-0285.2005.00327.x, PMID 16492153.

Harder E, Damm W, Maple J, WU C, Reboul M, Xiang JY. Opls3: a force field providing broad coverage of drug like small molecules and proteins. J Chem Theory Comput. 2016 Jan 12;12(1):281-96. doi: 10.1021/acs.jctc.5b00864, PMID 26584231.

Procacci P. Methodological uncertainties in drug-receptor binding free energy predictions based on classical molecular dynamics. Curr Opin Struct Biol. 2021 Apr;67:127-34. doi: 10.1016/j.sbi.2020.08.001, PMID 33220532.

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004 Mar 1;47(7):1739-49. doi: 10.1021/jm0306430, PMID 15027865.

Jayanthi K, Ahmed SS, Baqi MA, Afzal Azam MA. Molecular docking dynamics of selected benzylidene aminophenyl acetamides as Tmk inhibitors using high throughput virtual screening (Htvs). Int J App Pharm. 2024;16(3):290-7. doi: 10.22159/ijap.2024v16i3.50023.

Divyashri G, Krishna Murthy TP, Sundareshan S, Kamath P, Murahari M, Saraswathy GR. In silico approach towards the identification of potential inhibitors from Curcuma amada Roxb against H. pylori: ADMET screening and molecular docking studies. Bioimpacts. 2021;11(2):119-27. doi: 10.34172/bi.2021.19, PMID 33842282.

Mulakala C, Viswanadhan VN. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? J Mol Graph Model. 2013 Nov;46:41-51. doi: 10.1016/j.jmgm.2013.09.005, PMID 24121518.

Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71(1):1-20. doi: 10.1016/s0168-1605(01)00560-8, PMID 11764886.

Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV. Purification and characterization of the bacteriocin produced by lactobacillus sakei MBSa1 isolated from Brazilian salami. J Appl Microbiol. 2014;116(5):1195-208. doi: 10.1111/jam.12438, PMID 24506656.

Cadieux P, Wind A, Sommer P, Schaefer L, Crowley K, Britton RA. Evaluation of reuterin production in urogenital probiotic lactobacillus reuteri RC-14. Appl Environ Microbiol. 2008 Aug;74(15):4645-9. doi: 10.1128/AEM.00139-08, PMID 18539802.

Aasen IM, Markussen S, Moretro T, Katla T, Axelsson L, Naterstad K. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol. 2003;87(1-2):35-43. doi: 10.1016/s0168-1605(03)00047-3, PMID 12927705.

Cahyani RD, Mustopa AZ, Umami RN, Firdaus ME, Manguntungi AB, Arwansyah A. Molecular docking analysis for screening of cyclooxygenase-2 inhibitors from secondary metabolite compounds of lactococcus lactis subsp. lactis (Lac3). Philipp J Sci. 2023;152(4):1307-24. doi: 10.56899/152.04.04.

Chaudhary N, Aparoy P. Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations MM-PBSA binding energy calculations and per-residue energy decomposition studies. J Biomol Struct Dyn. 2017 Mar 12;35(4):868-82. doi: 10.1080/07391102.2016.1165736, PMID 26982261.

Uzzaman M, Mahmud T. Structural modification of aspirin to design a new potential cyclooxygenase (COX-2) inhibitors. In Silico Pharmacol. 2020;8(1):1. doi: 10.1007/s40203-020-0053-0, PMID 32181121.

Pairet M, Engelhardt G. Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fundam Clin Pharmacol. 1996;10(1):1-17. doi: 10.1111/j.1472-8206.1996.tb00144.x, PMID 8900495.

Lipinski CA. Lead and drug-like compounds: the rule of five revolution. Drug Discov Today Technol. 2004;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007, PMID 24981612.

Redhu S, Jindal A. Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci. 2013;5(5).

Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers. 2020;12(6):1579. doi: 10.3390/cancers12061579, PMID 32549302.

Zhivkova Z. Quantitative structure pharmacokinetics modeling of the unbound clearance for neutral drugs. Int J Curr Pharm Sci. 2018;10(2):56-9. doi: 10.22159/ijcpr.2018v10i2.25849.

R Pounikar A, J Umekar M, R Gupta K. Genotoxic impurities: an important regulatory aspect. Asian J Pharm Clin Res. 2020;13(6):10-25. doi: 10.22159/ajpcr.2020.v13i6.37370.

Thiyam R, Narasu ML. Evaluation of cytotoxic and genotoxic effects of zerumbone on colon adenocarcinoma COLO205 cells and human lymphocytes. Int J Pharm Pharm Sci. 2017;9(10):92-6. doi: 10.22159/ijpps.2017v9i11.21120.

Published

07-01-2025

How to Cite

BAQI, M. A., JAYANTHI, K., & RAJESHKUMAR, R. (2025). MOLECULAR DOCKING INSIGHTS INTO PROBIOTICS SAKACIN P AND SAKACIN A AS POTENTIAL INHIBITORS OF THE COX-2 PATHWAY FOR COLON CANCER THERAPY. International Journal of Applied Pharmaceutics, 17(1), 153–160. https://doi.org/10.22159/ijap.2025v17i1.52476

Issue

Section

Original Article(s)

Most read articles by the same author(s)