OPTIMIZING ORAL BIOAVAILABILITY OF SUNITINIB: QUALITY BY DESIGN IN NANOBUBBLE FORMULATION
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52462Keywords:
Box-Behnken design, Colorectal cancer, Dextran, Nanobubbles, Sunitinib, Sustained release, Soya lecithin, Palmitic acidAbstract
Objective: The use of dextran nanobubbles is aimed at function as a delivery system for drugs like sunitinib. These specially designed nanobubbles enhance the drug's solubility, stability, and bioavailability, thus improving the therapeutic effectiveness. Moreover, they offer controlled release characteristics and can potentially enhance drug delivery to tissues or cells, thereby maximizing pharmacological results while reducing adverse effects.
Methods: Drug-loaded dextran nanobubbles were formulated using the emulsification technique and optimized using a Box Behnken design that considered process and formulation parameters. The Nanobubbles characterization includes Particle Size (PS), drug loading, entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC), X-ray diffraction studies, stability studies, and as well in vitro and in vivo studies in rats.
Results: The optimized nanobubbles displayed a PS of 177.8±5.2 nm, zeta potential of-21.1±0.43 mV, and poly dispersity index of 0.262±0.089. With 69.12±1.41% of entrapment efficiency and 26.29±4.01% drug loading, in vitro studies revealed a superior drug release (99%) with ultrasound versus plain drug (39%). FTIR and DSC studies confirmed no drug-polymer interaction. Scanning electron microscopy images displayed uniform spherical nanosized particles. Stability studies indicated no significant changes after 30 days. The nanobubbles exhibited increased Cmax (4.52) and AUC0-t (5.27), promising enhanced solubility, absorption, and extended half-life.
Conclusion: The current investigation shows that dextran nanobubbles loaded with sunitinib have a promising delayed release potential, which makes them a possible treatment alternative for cancer.
Downloads
References
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti and pro-angiogenic therapies. Genes Cancer. 2011 Dec;2(12):1097-105. doi: 10.1177/1947601911423031, PMID 22866201.
Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel). 2010 Mar;3(3):572-99. doi: 10.3390/ph3030572, PMID 27713269.
Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007 Mar;13(5):1367-73. doi: 10.1158/1078-0432.CCR-06-2328, PMID 17332278.
Kloth JS, Binkhorst L, DE Wit AS, DE Bruijn P, Hamberg P, Lam MH. Relationship between sunitinib pharmacokinetics and administration time: preclinical and clinical evidence. Clin Pharmacokinet. 2015 Aug;54(8):851-8. doi: 10.1007/s40262-015-0239-5, PMID 25647628.
Kim S, Ding W, Zhang L, Tian W, Chen S. Clinical response to sunitinib as a multitargeted tyrosine kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther. 2014 May;7:719-28. doi: 10.2147/OTT.S61388, PMID 24872713.
Sanofi aventis US, LLC, Regeneron Pharmaceuticals Inc. Highlights of prescribing information; 2015. Available from: www.fda.gov/medwatch.
Lankheet NA, Kloth JS, Gadellaa Van Hooijdonk CG, Cirkel GA, Mathijssen RH, Lolkema MP. Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer. 2014 May;110(10):2441-9. doi: 10.1038/bjc.2014.194, PMID 24736581.
Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010 Jul;66(2):357-71. doi: 10.1007/s00280-009-1170-y, PMID 19967539.
Sunitinib malate solid dispersion; 2013. Available from: www.https://patents.google.com/patent/WO2013160916A1/en. [Last accessed on 28 Nov 2024].
Alshahrani SM, Alshetaili AS, Alalaiwe A, Alsulays BB, Anwer MK, Al Shdefat R. Anticancer efficacy of self-nanoemulsifying drug delivery system of sunitinib malate. AAPS Pharm Sci Tech. 2018 Jan;19(1):123-33. doi: 10.1208/s12249-017-0826-x, PMID 28620763.
Yang J, Luo L, Oh Y, Meng T, Chai G, Xia S. Sunitinib malate loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J Control Release. 2020 Nov;327:456-66. doi: 10.1016/j.jconrel.2020.08.019, PMID 32822742.
Sodeifian G, Razmimanesh F, Sajadian SA. Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC−CO2): experimental correlations and thermodynamic modeling. J Mol Liq. 2020 Jan;297:111740. doi: 10.1016/j.molliq.2019.111740.
Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan MH. Carrier-enhanced anticancer efficacy of sunitinib loaded green tea based micellar nano complex beyond tumor-targeted delivery. ACS Nano. 2019 Jul;13(7):7591-602. doi: 10.1021/acsnano.9b00467, PMID 31262169.
Tarasi F, Lanza PA, Ferretti V, Echeverria GA, Piro OE, Cacicedo M. Synthesis and characterization of novel copper (II) sunitinib complex: molecular docking DFT studies hirshfeld analysis and cytotoxicity studies. Inorganics. 2014 Jul;10(1):3. doi: 10.3390/inorganics10010003.
Jose AD, WU Z, Thakur SS. A comprehensive update of micro and nanobubbles as theranostics in oncology. Eur J Pharm Biopharm. 2022 Mar;172:123-33. doi: 10.1016/j.ejpb.2022.02.008, PMID 35181491.
Kishore Kumar M, Jaya Prakash D, Basava Rao VV. Chitosan nanobubbles development and evaluation for the delivery of sunitinib an anticancer agent. Int J Appl Pharm. 2022 Jun;14(6):58-67.
Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009 Nov;381(2):160-5. doi: 10.1016/j.ijpharm.2009.07.010, PMID 19616610.
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G. Low-dose curcuminoid loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. Nanotechnology. 2019 May;30(21):214004. doi: 10.1088/1361-6528/aaff96, PMID 30654342.
Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR. Vancomycin loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant staphylococcus aureus infections. Int J Pharm. 2017 May;523(1):176-88. doi: 10.1016/j.ijpharm.2017.03.033, PMID 28330735.
Sampathi S, Amancha R, Dodoala SD, Kuchana V. Biodegradable polymeric nanocarriers for oral delivery of antiretroviral drug: pharmacokinetic and in vitro permeability studies. J Appl Pharm Sci. 2021 Apr;11(4):28-39.
Rangaraj N, Pailla SR, Chowta P, Sampathi S. Fabrication of ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS Pharm Sci Tech. 2019;20(8):326. doi: 10.1208/s12249-019-1524-7, PMID 31659558.
Blanchet B, Saboureau C, Benichou AS, Billemont B, Taieb F, Ropert S. Development and validation of an HPLC-UV-visible method for sunitinib quantification in human plasma. Clin Chim Acta. 2009 Jun;404(2):134-9. doi: 10.1016/j.cca.2009.03.042, PMID 19341717.
Abdalkader R, Kawakami S, Unga J, Higuchi Y, Suzuki R, Maruyama K. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Deliv. 2017 Nov;24(1):320-7. doi: 10.1080/10717544.2016.1250139, PMID 28165819.
Ramasundaram S, Saravanakumar G, Sobha S, OH TH. Dextran sulfate nanocarriers: design strategies and biomedical applications. Int J Mol Sci. 2022 Dec;24(1):355. doi: 10.3390/ijms24010355, PMID 36613798.
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, McLaughlan JR, Coletta PL. The influence of nanobubble size and stability on ultrasound-enhanced drug delivery. Langmuir. 2022 Nov;38(45):13943-54. doi: 10.1021/acs.langmuir.2c02303, PMID 36322191.
Bhattacharjee S. DLS and zeta potential-what they are and what they are not? J Control Release. 2016 Aug;235:337-51. doi: 10.1016/j.jconrel.2016.06.017, PMID 27297779.
Muralikrishna P, Babu AK, Mamatha P. Formulation and optimization of ceritinib loaded nanobubbles by box-Behnken design. Int J App Pharm. 2022 Apr;14(4):219-26. doi: 10.22159/ijap.2022v14i4.44388.
Joseph JJ, Sangeetha D, Gomathi T. Sunitinib loaded chitosan nanoparticles formulation and its evaluation. Int J Biol Macromol. 2016 Jan;82:952-8. doi: 10.1016/j.ijbiomac.2015.10.079, PMID 26522243.
Gao X, Guo D, Mao X, Shan X, HE X, YU C. Perfluoropentane filled chitosan poly acrylic acid nanobubbles with high stability for long-term ultrasound imaging in vivo. Nanoscale. 2021 Mar;13(10):5333-43. doi: 10.1039/d0nr06878k, PMID 33659972.
SU C, Ren X, Nie F, LI T, LV W, LI H. Current advances in ultrasound combined nanobubbles for cancer targeted therapy: a review of the current status and future perspectives. RSC Adv. 2021 Apr;11(21):12915-28. doi: 10.1039/d0ra08727k, PMID 35423829.
Begum MY, Gudipati PR. Formulation and evaluation of dasatinib-loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2018 Dec;10(12):14-20. doi: 10.22159/ijpps.2018v10i12.27567.
Darji AA, Bharadia PD. Chronic myelogenous leukemia: a review and update of current and future therapy. Int J Pharm Pharm Sci. 2016 Jul;8(7):35-4.
Anil L, Mohandas S. In vitro antioxidant and anticancer activity of macranga peltata leaf extracts on lung cancer cell lines. Int J Curr Pharm Sci. 2023 Apr;15(4):26-32. doi: 10.22159/ijcpr.2023v15i4.3019.
Arafath AA, Jayakar B. Enhancement of oral bioavailability via solid lipid nanoparticles of anticancer drug dasatinib an in vitro cytotoxicity and pharmacokinetic study. Asian J Pharm Clin Res. 2019 Jun;12(6):143-5.
Published
How to Cite
Issue
Section
Copyright (c) 2025 ANJANEYULU PATAMSETTI, KUMAR SHIVA GUBBIYAPPA
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.