OPTIMIZING ORAL BIOAVAILABILITY OF SUNITINIB: QUALITY BY DESIGN IN NANOBUBBLE FORMULATION
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52462Keywords:
Box-Behnken design, Colorectal cancer, Dextran, Nanobubbles, Sunitinib, Sustained release, Soya lecithin, Palmitic acidAbstract
Objective: The use of dextran nanobubbles is aimed at function as a delivery system for drugs like sunitinib. These specially designed nanobubbles enhance the drug's solubility, stability, and bioavailability thus improving the therapeutic effectiveness. Moreover, they offer controlled release characteristics and can potentially enhance drug delivery to tissues or cells, thereby maximizing pharmacological results while reducing adverse effects.
Methods: Drug loaded dextran nanobubbles were formulated using the emulsification technique and optimized using a Box Behnken design that considered process and formulation parameters. The Nanobubbles characterization includes Particle Size (PS), drug loading, entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC), X-ray diffraction studies, stability studies, and as well in vitro and in-vivo studies in rats.
Results: The optimized nanobubbles displayed a PS of 177.8±5.2nm, zeta potential of -21.1±0.43 mV, and ploy dispersity index of 0.262±0.089. With 69.12±1.41% of entrapment efficiency and 26.29±4.01% drug loading, in-vitro studies revealed a superior drug release (99%) with ultrasound versus plain drug (39%). FTIR and DSC studies confirmed no drug-polymer interaction. Scanning electron microscopy images displayed uniform spherical nanosized particles. Stability studies indicated no significant changes after 30 days. The nanobubbles exhibited increased Cmax (4.52) and AUC0-t (5.27), promising enhanced solubility, absorption, and extended half-life.
Conclusion: The current investigation shows that dextran nanobubbles loaded with sunitinib have a promising delayed release potential, which makes them a possible treatment alternative for cancer.
Downloads
References
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011 Dec;2(12):1097-105
Raica M, Cimpean AM. Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals (Basel). 2010 Mar;3(3):572-599.
Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, Booth BP, Verbois SL, Morse DE, Liang CY, Chidambaram N, Jiang JX, Tang S, Mahjoob K, Justice R, Pazdur R. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007 Mar;13(5):1367-73.
Kloth JS, Binkhorst L, de Wit AS, de Bruijn P, Hamberg P, Lam MH, Burger H, Chaves I, Wiemer EA, van der Horst GT, Mathijssen RH. Relationship Between Sunitinib Pharmacokinetics and Administration Time: Preclinical and Clinical Evidence. Clin Pharmacokinet. 2015 Aug;54(8):851-8.
Kim S, Ding W, Zhang L, Tian W, Chen S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther. 2014 May;7:719-28.
Sanofi-aventis U.S. LLC, & Regeneron Pharmaceuticals Inc. Highlights of prescribing information. 2015. Retrieved from www.fda.gov/medwatch.
Lankheet NA, Kloth JS, Gadellaa-van Hooijdonk CG, Cirkel GA, Mathijssen RH, Lolkema MP, Schellens JH, Voest EE, Sleijfer S, de Jonge MJ, Haanen JB, Beijnen JH, Huitema AD, Steeghs N. Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer. 2014 May;110(10):2441-9.
Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010 Jul;66(2):357-71.
www.https://patents.google.com/patent/WO2013160916A1/en. Sunitinib malate solid dispersion. (2013).
Alshahrani SM, Alshetaili AS, Alalaiwe A, Alsulays BB, Anwer MK, Al-Shdefat R, Imam F, Shakeel F. Anticancer Efficacy of Self-Nanoemulsifying Drug Delivery System of Sunitinib Malate. AAPS PharmSciTech. 2018 Jan;19(1):123-133.
Yang J, Luo L, Oh Y, Meng T, Chai G, Xia S, Emmert D, Wang B, Eberhart CG, Lee S, Stark WJ, Ensign LM, Hanes J, Xu Q. Sunitinib malate-loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J Control Release. 2020 Nov;327:456-466.
Sodeifian G, Razmimanesh F, Sajadian S.A. Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC–CO2): Experimental correlations and thermodynamic modeling. J Mol Liq. 2020 Jan; 297:111740.
Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan MH, Ying JY, Kurisawa M. Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex beyond Tumor-Targeted Delivery. ACS Nano. 2019 Jul;13(7):7591-7602.
Tarasi F, et al. Synthesis and Characterization of Novel Copper (II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies. Inorganics. 2014 Jul;10(1):3.
Jose AD, Wu Z, Thakur SS. A comprehensive update of micro- and nanobubbles as theranostics in oncology. Eur J Pharm Biopharm. 2022 Mar;172:123-133.
Kishore Kumar M, Jaya Prakash D, Basava Rao VV. Chitosan nanobubbles development and evaluation for the delivery of sunitinib-an anticancer agent. . Int J App Pharm. 2022 Jun;14(6):58–67.
Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G, Guiot C, Trotta M. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm. 2009 Nov;381(2):160-5.
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G, Cravotto G, Guiot C, Stura I, Cavalli R, Dianzani C. Low-dose curcuminoid-loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. Nanotechnology. 2019 May;30(21):214004.
Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, Khadjavi A, Spagnolo R, Tullio V, Giribaldi G, Guiot C, Cuffini AM, Prato M, Cavalli R. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017 May;523(1):176-188.
Sampathi S, Amancha R, Dodoala S D, Kuchana V. Biodegradable polymeric nanocarriers for oral delivery of antiretroviral drug: Pharmacokinetic and in vitro permeability studies. J Appl Pharm Sci. 2021 Apr;11(4): 028–039.
Rangaraj N, Pailla SR, Chowta P, Sampathi,S. Fabrication of Ibrutinib Nanosuspension by Quality by Design Approach: Intended for Enhanced Oral Bioavailability and Diminished Fast Fed Variability. AAPS PharmSciTech. 019 Aug;20(8).
Blanchet B, Saboureau C, Benichou AS, Billemont B, Taieb F, Ropert S, Dauphin A, Goldwasser F, Tod M. Development and validation of an HPLC-UV-visible method for sunitinib quantification in human plasma. Clin Chim Acta. 2009 Jun;404(2):134-9.
Abdalkader R, Kawakami S, Unga J, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Deliv. 2017 Nov;24(1):320-327.
Ramasundaram S, Saravanakumar G, Sobha S, Oh TH. Dextran Sulfate Nanocarriers: Design, Strategies and Biomedical Applications. Int J Mol Sci. 2022 Dec;24(1):355.
Batchelor DVB, Armistead FJ, Ingram N, Peyman SA, McLaughlan JR, Coletta PL, Evans SD. The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery. Langmuir. 2022 Nov;38(45):13943-13954.
Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release. 2016 Aug;235:337-351.
Muralikrishna P, Babu AK, Mamatha P. Formulation and optimization of ceritinib loaded nanobubbles by box-behnken design. Int J App Pharm. 2022 Apr;14(4), 219–226.
Joseph JJ, Sangeetha D, Gomathi T. Sunitinib loaded chitosan nanoparticles formulation and its evaluation. Int J Biol Macromol. 2016 Jan;82:952-8.
Gao X, Guo D, Mao X, Shan X, He X, Yu C. Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with high stability for long-term ultrasound imaging in vivo. Nanoscale. 2021 Mar;13(10):5333-5343.
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv. 2021 Apr;11(21):12915-12928.
Begum MY and Gudipati PR. Formulation and evaluation of Dasatinib loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2018 Dec;10(12):14-20.
Darji AA and Bharadia P D. Chronic Myelogenous Leukemia: A Review and Update of Current and Future Therapy. Int J Pharm Pharm Sci. 2016 Jul;8(7):35-4.
Anil L, Mohandas S. In vitro antioxidant and anticancer activity of macranga peltata leaf extracts on lung cancer cell lines. Int J Curr Pharm. 2023 Apr;15(4):26-32.
Arafath AAMY and Jayakar B. Enhancement of Oral Bioavailability via Solid Lipid Nanoparticles of Anticancer Drug Dasatinib - An in Vitro Cytotoxicity and Pharmacokinetic Study. Asian J Pharm Clin Res. 2019 Jun;12(6):143-5.
Published
How to Cite
Issue
Section
Copyright (c) 2024 ANJANEYULU PATAMSETTI, KUMAR SHIVA GUBBIYAPPA
This work is licensed under a Creative Commons Attribution 4.0 International License.