EXPANSION STRATEGIES TO DESIGN HYBRID MOLECULES OF FDA APPROVED DRUGS AS POTENTIAL INHIBITORS OF SARS Co-V-2 MAIN PROTEASE (Mpro)
DOI:
https://doi.org/10.22159/ijap.2025v17i2.53121Keywords:
SARS Co-V-2, Main protease (Mpro), Hybrid molecules, Penciclovir, Hydroxychloroquine, ADMET, Molecular docking, Molecular dynamicsAbstract
Objective: This research was conducted to design hybrid molecules of FDA-approved drugs as potential inhibitors of SARS Co-V-2 (Mpro) using computational approach.
Methods: This work focused on the significance of hybrid molecules or Mutual Pro-drugs. We have designed a set of 20 molecules and applied Molecular Docking, and Absorption, Distribution, Metabolism, and Excretion, Toxicity(ADMET) tests to filter them. The most effective molecule was then studied for its stability using Molecular Dynamic (MD) simulations.
Results: We have found that the molecule PH-6a has a very low binding energy of -7.58kcal/mol and it forms five hydrogen bonds (Met49, Phe140, His163, and Glu166) and a pi bond (Cys145) with the crucial residues of the targeted Mpro protein. It possesses lower toxicity, is impermeable to the blood-brain barrier (BBB), and has favourable synthetic availability and drug scores. The Root Mean Square Deviation (RMSD) of the lead compound (PH-6a) was within the acceptable range of 3 Å and the total energy of the compound PH-6a was determined to be -5.06 kcal/mol, indicating a higher level of stability in the structure.
Conclusions: Our findings offer valuable insights into the significance of hybrid molecules and their potential application in the development of design strategies for addressing various emergency viral infections. Additionally, our results contribute to the creation of a library of compounds with potential therapeutic properties.
Downloads
References
ALI KANSO M, OMEICHE ZA, HIJAZI MA, EL-LAKANY A, ABOUL ELA M. Antiviral Potential of Herbal Medicine in Fighting Covid-19 Pandemic, Re-Investigation of Herbal Monographs. Int J Pharm Pharm Sci. 2024;16(9):18–25.
Hui DS, Azhar EI, Memish ZA, Zumla A. Human Coronavirus Infections—Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. 2nd ed. Vol. 4, Encyclopedia of Respiratory Medicine, Second Edition. Elsevier Inc.; 2021.
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Heal [Internet]. 2024;8(4):e270–83.
AstraZeneca admits its COVID vaccine, Covishield, can cause rare side effect - Times of India [Internet]. [cited 2024 May 2]. Available from: https://timesofindia.indiatimes.com/life-style/health-fitness/health-news/astrazeneca-admits-its-covid-vaccine-can-cause-rare-side-effect/articleshow/109710995.cms
Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020;80(5):554–62.
Thiel V, Ivanov KA, Putics Á, Hertzig T, Schelle B, Bayer S, Weißbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003;84(9):2305–15.
Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281(18):4085–96.
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio. 2018;9(2).
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase. J Virol. 2004;78(11):5619–32.
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70.
Nahir CF, Putra MY, Wibowo JTRI, Lee VS, Yanuar A. The potential of Indonesian Marine Natural product with Dual targeting Activity Through SARS-COV-2 3CLPRO AND PLPRO : an in silico studies. 2023;15(5).
Muralikrishnan A, Kubavat J, Vasava M, Jupudi S, Biju N. Investigation of Anti-Sars Cov-2 Activity of Some Tetrahydro Curcumin Derivatives: an in Silico Study. Int J Appl Pharm. 2023;15(1):333–9.
Vibhute S, Kasar A, Mahale H, Gaikwad M, Kulkarni M. Niclosamide: a Potential Treatment Option for Covid-19. Int J Appl Pharm. 2023;15(1):50–6.
Frediansyah A, Nainu F, Dhama K, Mudatsir M, Harapan H. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clin Epidemiol Glob Heal. 2021;9(July 2020):123–7.
Samaee H, Mohsenzadegan M, Ala S, Maroufi SS, Moradimajd P. Tocilizumab for treatment patients with COVID-19: Recommended medication for novel disease. Int Immunopharmacol. 2020;89(August):107018.
Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, ter Horst S, Liesenborghs L,et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2−infected hamsters, whereas hydroxychloroquine lacks activity. Proc Natl Acad Sci U S A. 2020;117(43):26955–65.
Gentry CA, Thind SK, Williams RJ, Hendrickson SC, Kurdgelashvili G, Humphrey MB. Development of SARS-CoV-2 infection in patients with rheumatic conditions on hydroxychloroquine monotherapy vs. patients without rheumatic conditions: A retrospective, propensity-matched cohort study. Am J Med Sci. 2023;365(1):19–25.
Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg Chem. 2021;106(May 2020):104490.
NARWAT A, DUA M, GOYAL A. Safety Monitoring of Covid-19 Vaccine: in a Tertiary Care Hospital in Haryana. Int J Pharm Pharm Sci. 2023;15(3):35–7.
Mahdi MF, Alsaad HN. Design, synthesis and hydrolytic behavior of mutual prodrugs of NSAIDs with gabapentin using glycol spacers. Pharmaceuticals. 2012;5(10):1080–91.
Song B, Liu X, Dong H, Roy R. miR-140-3P Induces Chemotherapy Resistance in Esophageal Carcinoma by Targeting the NFYA-MDR1 Axis. Appl Biochem Biotechnol. 2023;195(2):973–91.
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem. 2021 Dec 6;16(23):3496–512.
Ghanbari R, Teimoori A, Sadeghi A, Mohamadkhani A, Rezasoltani S, Asadi E, Jouyban A, Sumner SC. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol. 2020 Dec;15:1747–58.
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Vol. 30, Cell research. England; 2020. p. 269–71.
Ravishankar N, Sadhana P, Thakur A, Singh T. Denudation of COVID-19 Genome. In: 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT). 2022.
Gogineni V, Schinazi RF, Hamann MT. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem Rev. 2015 Sep 23 [cited 2024 Apr 30];115(18):9655–706.
Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014 Jun 26 [cited 2024 Apr 30];57(12):5023–38.
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009 Jul 8 [cited 2024 Apr 30];109(7):2880–93.
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem. 2023 Jul 1;136:106549.
Zhang J, Wang S, Ba Y, Xu Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur J Med Chem. 2019;174:1–8.
Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Mol 2017, Vol 22, Page 2268. 2017 Dec 19 [cited 2024 May 2];22(12):2268.
Pallaval VB, Kanithi M, Meenakshisundaram S, Jagadeesh A, Alavala M, Pillaiyar T, Manickam M, Chidipi B. Chloroquine Analogs: An Overview of Natural and Synthetic Quinolines as Broad Spectrum Antiviral Agents. Curr Pharm Des. 2020 Dec 14;27(9):1185–93.
T G S, Subramanian S, Eswaran S. Design, Synthesis and Study of Antibacterial and Antitubercular Activity of Quinoline Hydrazone Hybrids. 2020;26(1):137–47.
Shruthi TG, Subramanian S, Eswaran S. Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids. Heterocycl Commun. 2020;26(1):137–47.
Barmade Mahesh A., Sharma MK. Chapter 12 - Biological Spectrum of Vicinal Diaryl-Substituted Fused Heterocycles. In: Yadav MR, Murumkar PR, Ghuge RBBTVDSH, editors. Elsevier; 2018. p. 363–99.
Consortium TCM, Achdout H, Aimon A, Bar-David E, Barr H, Ben-Shmuel A, Bennett J, Boby ML, et.al. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv. 2021;2020.10.29.339317.
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Zhu Y, Zhu C, Hu T, Du X, Duan Y, Yu J, Yang X, Yang X, Yang K, Liu X, Guddat LW, Xiao G, Zhang L, Yang H, Rao Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol. 2020;27(6):529–32.
Duong CQ, Nguyen PTV. Exploration of SARS-CoV-2 Mpro Noncovalent Natural Inhibitors Using Structure-Based Approaches. ACS omega. 2023 Feb;8(7):6679–88.
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80- ). 2020;368(6489):409–12.
Farghaly TA, Masaret GS, Abdulwahab HG. Novel 1,3-Indanedione-Thiazole Hybrids as Small-Molecule SARS-COV-2 Main Protease Inhibitors With Potential anti-Coronaviral Activity. Polycycl Aromat Compd. 2024;
Cardoso-Ortiz J, Leyva-Ramos S, Baines KM, Gómez-Durán CFA, Hernández-López H, Palacios-Can FJ,et.al. Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: Targeting S. aureus topoisomerase and SARS-CoV-2-MPro. J Mol Struct. 2023;1274:134507.
Koshland Jr. DE. The Key–Lock Theory and the Induced Fit Theory. Angew Chemie Int Ed English. 1995 Jan 3;33(23–24):2375–8. A
Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan;93(1):13–20.
Chang KY, Varani G. Nucleic acids structure and recognition. Nat Struct Biol. 1997 Oct;4 Suppl:854–8.
Bauman JD, Patel D, Dharia C, Fromer MW, Ahmed S, Frenkel Y, Vijayan RSK, Eck JT, Ho WC, Das K, Shatkin AJ, Arnold E. Detecting allosteric sites of HIV-1 reverse transcriptase by X-ray crystallographic fragment screening. J Med Chem. 2013 Apr;56(7):2738–46.
Allouche A rahman. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem. 2012;32:174–82.
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(January):1–13.
Anil Kumar S, Bhaskar BL. Preliminary investigation of drug impurities associated with the anti-influenza drug Favipiravir – An insilico approach. Comput Theor Chem. 2021;1204(July):113375.
Sasidharan Pillai AK, Bhaskar BL. Computational, Spectral, and Bioavailability Studies of Venlafaxine Cyclic Impurity. ECS Trans. 2022;107(1):13439–49.
Anil Kumar S, Bhaskar BL. Development and validation of two spectrophotometric methods for the estimation of Dronedarone impurity molecule: (5-Amino-2-butyl-3-benzofuranyl)[4-[3-(dibutylamino)propoxy]phenyl]methanone. Mater Today Proc. 2021;46:2940–4.
Kumar SA, Bhaskar BL. Computational and spectral studies of 3,3’-(propane-1,3-diyl)bis(7,8-dimethoxy-1,3,4,5-tetrahydro-2H-benzo[d]azepin-2-one). Heliyon. 2019;5(9):e02420.
Jalal K, Khan K, Haleem DJ, Uddin R. In silico study to identify new monoamine oxidase type a (MAO-A) selective inhibitors from natural source by virtual screening and molecular dynamics simulation. J Mol Struct. 2022;1254:132244.
Cardoso WB, Mendanha SA. Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors. J Mol Struct. 2021;1225:129143.
Ahmad P, Alvi SS, Hasan I, Khan MS. Targeting SARS-CoV-2 main protease (Mpro) and human ACE-2: A virtual screening of carotenoids and polyphenols from tomato (Solanum lycopersicum L.) to combat Covid-19. Intell Pharm. 2024;2(1):51–68.
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6.
Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, Sharifi M, Derakhshankhah et.al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn. 2021 [cited 2023 Nov 15];39(8):3025–33.
Khalifa A, Gammal G, Fadl S, Gohary M, Barakat M. Laboratory Microbiological and Chemical Analysis for Detection of Water Pollution in Fresh Water Fish Farms. Alexandria J Vet Sci. 2020;66(1):76.
Kim S, Kim DM, Lee B. Insufficient Sensitivity of RNA Dependent RNA Polymerase Gene of SARS-CoV-2 Viral Genome as Confirmatory Test using Korean COVID-19 Cases. 2020;
Basic doubt regarding frames in the trajectory - User discussions - GROMACS forums. [cited 2024 May 10].
Zhang S, Zhong N, Xue F, Kang X, Ren X, Chen J, Jin C, Lou Z, Xia B. Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell. 2010;1(4):371–83.
Pfizer Inc. Pfizer’s Novel COVID-19 Oral Antiviral Treatment Candidate Reduced Risk of Hospitalization or Death by 89% in Interim Analysis of Phase 2/3 EPIC-HR Study | Pfizer. Pfizer Website. 2021;
Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, Zhang X, Tarbet B, Marty MT, Chen Y, Wang J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30(8):678–92.
Merzouki M, Challioui A, Bourassi L, Abidi R, Bouammli B, El Farh L. In silico evaluation of antiviral activity of flavone derivatives and commercial drugs against SARS-CoV-2 main protease (3CLpro). Moroccan J Chem. 2023;11(1):129–43.
Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Vol. 39, Journal of biomolecular structure &dynamics. England; 2021.
Patel U, Desai K, Dabhi RC, Maru JJ, Shrivastav PS. Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): a computational study. J Mol Model. 2023;29(5):1–15.
Menacer R, Bouchekioua S, Meliani S, Belattar N. New combined Inverse-QSAR and molecular docking method for scaffold-based drug discovery. Comput Biol Med. 2024;180(March):108992.
Published
How to Cite
Issue
Section
Copyright (c) 2024 THEJUS VARGHESE THOMAS, AMRITA THAKUR, ANIL KUMAR S.
This work is licensed under a Creative Commons Attribution 4.0 International License.