• SARITHA M. Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, 530049
  • BOYINA HARSHINI Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, 530049
  • P. V. KAMALA KUMARI Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, 530049
  • Y. SRINIVASA RAO Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, 530049



Cubosomes, Drug-loading hydrophilic, Hydrophobic, Amphiphilic, Lyotropic liquid crystals, Biocontinuous, Nanoparticles, Honeycomb, Self-assembly, Anti-cancer


Cubosomes are stable nanostructured liquid crystalline particles which are made of a specific group of amphiphilic lipids in definite proper ratio in water and then stabilised by biocompatible substances like triblock polymer. Cubosomes are curved bicontinuous cubic phase liquid crystals and they can split to form thermodynamically stable particulate dispersions. Cubosomes have biocompatible and bio-adhesive properties andare capable of loading 3D bilayered structure resembling honeycomb (carvenous) like structure by encapsulating lipophilic, hydrophobic and amphiphilic substances. Cubosomes are administered through different ways such as orally, parenterally and percutaneously. Cubosomes are versatile systems in their structure for drug delivery systems.


Download data is not yet available.


Andersson S, Jacob M, Larsson K. Structure of the cubosome– a closed lipid bilayer aggregate. Zeitschrift für Kristallographie. Crystalline Materials. 1995;210(5):315-8. doi: 10.1524/ zkri.1995.210.5.315.

Spicer PT. Cubosomes bicontinuous cubic liquid crystalline nanostructured particles. Cincinnati: Procter and Gamble Company; 2004. doi: 10.1081/E-ENN, PMID 120014156.

Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2-3):229-50. doi: 10.1016/s0169-409x(01)00108-9, PMID 11311994.

Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opinion Colloid Interface Sci. 1999;4(6):449-56. doi: 10.1016/S1359-0294(00)00020-0.

Chong JYT, Drummond XMBBCJ. Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (Cubosomes). Adv Planar Lipidic Bilayers Liposomes. 2015;21:131-87.

Larsson K, Fontell K, Krog N. Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems. possibility of cubic structures in biological systems. Chem Phys Lipids. 1980;27(4):321-8. doi: 10.1016/0009-3084(80)90026-2.

Anbarasan B, Grace XF, Shanmuganathan S. An overview of cubosomes- smart drug delivery system. Sri Ramachandra J Med. 2015;8:1-4.

Khedekar PB. Cubosomes: a vehicle for delivery of various therapeutic agents. MOJ Toxicol. 2018;4(1):19–21. doi: 10.15406/mojt.2018.04.00083.

Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789-801. doi: 10.1016/j.drudis.2016.01.004, PMID 26780385.

Urvi S, Dhiren D, Bhavin P. Overview of cubosomes: A nanoparticle. J Pharm Integr Life Sci. 2013;1(5):36-47.

Bouwstra JA, Honeywell Nguyen PL. Vesicles as a tool for transdermal and drug delivery system. Drug Discovery Today Drug Delivery Nanotech. 2005;2:67-74.

Daware SU, Saudagar RB. Formulation and development of cubosome loaded Emulgel-A review. Int J ChemTech Res. 2017;10:918-24.

Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (Cubosomes). Langmuir. 2001;17(19):5748-56. doi: 10.1021/la010161w.

Almeida J, Edwards DC, Brand C, Heath T. Formation of virosomes from influenza subunits and liposomes. Lancet. 1975;306(7941):899-901. doi: 10.1016/S0140-6736(75)92130-3.

Makai M, Csanyi E, Dekany I, Nemeth Z, Eros I. Structural properties of nonionic surfactant/glycerol/paraffin lyotropic liquid crystals. Colloid Polym Sci. 2003;281(9):839-44. doi: 10.1007/s00396-002-0851-4.

Kulkarni CV, Wachter W, Iglesias Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid?. Phys Chem Chem Phys. 2011;13(8):3004-21. doi: 10.1039/C0CP01539C.

Montis C, Castroflorio B, Mendozza M, Salvatore A, Berti D, Baglioni P. Magneto cubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci. 2015;449:317-26. doi: 10.1016/j.jcis.2014.11.056, PMID 25533536.

Richert S, Schrader A, Schrader K. Transdermal delivery of two antioxidants from different cosmetic formulations. Int J Cosmet Sci. 2003;25(1-2):5-13. doi: 10.1046/j.1467-2494.2003.00158.x, PMID 18494876.

Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309(1-2):218-26. doi: 10.1016/j.ijpharm.2005.11.033, PMID 16413980.

Chong JYT, Mulet X, Boyd BJ, Drummond CJ. Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). Adv Planar Lipid Bilayers Liposomes. 2015;21:131-87. doi: 10.1016/bs.adplan.2014.11.001.

Wadsten Hindrichsen P, Bender J, Unga J, Engström S. Aqueous self-assembly of phytantriol in ternary systems: effect of monoolein, distearoylphosphatidylglycerol and three water-miscible solvents. J Colloid Interface Sci. 2007;315(2):701-13. doi: 10.1016/j.jcis.2007.07.011, PMID 17655855.

Zhai J, Waddington L, Wooster TJ, Aguilar MI, Boyd BJ. Revisiting beta-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir. 2011;27(24):14757-66. doi: 10.1021/la203061f, PMID 22026367.

Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P. Cubosomes: A novel carrier for transdermal drug delivery. J Drug Delivery Ther. 2020;10(1):123-30. doi: 10.22270/jddt.v10i1.3814.

Naveentaj S, Muzib YI. A review on liquid crystalline nanoparticles (cubosomes): emerging nanoparticulate drug carrier. Int J Curr Pharm Sci. 2020;12(1):5-9. doi: 10.22159/ijcpr.2020v12i1.36820.

Sadhu VR, Beram NS, Kantamneni P. A review on cubosome: the novel drug delivery system. GSC Biol Pharm Sci. 2018;5(1):76-81. doi: 10.30574/gscbps.2018.5.1.0089.

Radiman S, Toprakcioglu C, Mcleish T. Rheological study of ternary cubic phases. Langmuir. 1994;10(1):61-7. doi: 10.1021/la00013a009.

Almgren M, Edwards K, Gustafsson J. Cryotransmission electron microscopy of thin vitrified samples. Curr Opin Colloid Interface Sci. 1996;1(2):270-8. doi: 10.1016/S1359-0294(96)80015-X.

Bei D, Meng J, Youan BB. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010;5(9):1385-99. doi: 10.2217/nnm.10.117, PMID 21128721.

Spicer PT, Small WB, Small WB, Lynch ML, Burns JL. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes). J Nanoparticle Res. 2002;4(4):297-311. doi: 10.1023/A:1021184216308.

Worle G, Drechsler M, Koch MH, Siekmann B, Westesen K, Bunjes H. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm. 2007;329(1-2):150-7. doi: 10.1016/ j.ijpharm.2006.08.023, PMID 16987623.

Khalifa MK. Miconazole nitrate based cubsosome hydrogels for topical application. Int J Drug Deliv. 2015;7:1-12.

Molly BA, Prasanthi NL. Cubic liquid crystalline nanoparticles (Cubosomes): A novel carrier for drug delivery. Int J Pharm Sci Res. 2019;10(3):973-84.

Bhowmik D, Gopinath H, Kumar BP. Recent advances in novel topical drug delivery system. J Pharm Innov. 2012;1(9):12.

Thorat YS, Gonjari ID, Hosmani AH. Solubility enhancement techniques: a review on conventional and novel approaches. Int J Pharm Sci Res. 2011;2(10):2501.

Nilsson C, Ostergaard J, Larsen SW, Larsen C, Urtti A, Yaghmur A. PEGylation of phytantriol-based lyotropic liquid crystalline particles--the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure. Langmuir. 2014;30(22):6398-407. doi: 10.1021/la501411w, PMID 24833115.

Sagnella S, Drummond C. Drug delivery a nanomedicine approach. Aust Biochem. 2012;43:5-7.

Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomed. 2015;10:5459-73. doi: 10.2147/IJN.S87336, PMID 26346130.

Afriat I, Biatry B. Use of cubic gel particles as agents against pollutants, especially in a cosmetic composition. EP Eur Pat Appl (L'Oreal, Fr.); 2001.

Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1-2):179-87. doi: 10.1016/j.ijpharm.2010.06.015, PMID 20558263.

Thadanki M, Kumari PS, Prabha KS. Overview of cubosomes: a nanoparticle. Int J Res Pharm Chem. 2011;1(3):535-41.



How to Cite

M., S., B. HARSHINI, P. V. K. KUMARI, and Y. S. RAO. “REVIEW ON CUBOSOMES”. International Journal of Current Pharmaceutical Research, vol. 13, no. 6, Nov. 2021, pp. 37-42, doi:10.22159/ijcpr.2021v13i6.1926 .



Review Article(s)