GLOBAL CURRENT TRENDS IN NATURAL PRODUCTS FOR DIABETES MANAGEMENT: A REVIEW

  • Jerine Peter S.
  • Evan Prince Sabina School of Biosciences and Technology, VIT University, Vellore-632014, Tamilnadu, India

Abstract

Diabetes mellitus is a major health problem in the world. There is no cure for diabetes. It is, therefore, essential to practice effective methods of the diagnosis, treatment, and management of diabetes. With the increase in a number of newer drugs for diabetes, there is the possibility of a wide range of side effects that vary from one drug to another. Hence, the need to explore oral antidiabetic drugs of natural origin with minimal side effects is highly essential. This review provides a scientific perspective on the usage and research of natural and Indian traditional remedies in the management of diabetes while also providing insight into the advances in our understanding of diabetic pathology.

Keywords: Diabetes, Hyperglycemia, Diabetic complications, Medicinal plants

Keywords: Diabetes, hyperglycemia, diabetic complications, medicinal plants

Downloads

Download data is not yet available.

References

1. Olokoba AB, Obateru OA, Olokoba LB. Type-2 diabetes mellitus: a review of current trends. Oman Med J 2012;27:269–73.
2. Brunetti L, Kalabalik J. Management of type-2 diabetes mellitus in adults. P T 2012;37:687–96.
3. Panico S, Iannuzzi A. Dietary fat composition and the metabolic syndrome. Eur J Lipid Sci Technol 2004;106:61–7.
4. Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther 2005;12:580–91.
5. Ozougwu O. The pathogenesis and pathophysiology of type-1 and type-2 diabetes mellitus. J Physiol Pathophysiol 2013;4:46–57.
6. Samuel VT, Shulman GI. Mechanisms for Insulin Resistance: Common Threads and missing links. Cell 2012;148:852–71.
7. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005;26:19–39.
8. West IC. Radicals and oxidative stress in diabetes. Diabetic Med 2000;17:171–80.
9. Sikarwar MS, Patil MB. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Int J Ayurveda Res 2010;1:199–204.
10. Mohan V, Sandeep S, Deepa R, Shah B, Varghese C. Epidemiology of type-2 diabetes: Indian scenario. Indian J Med Res 2007;125:217–30.
11. Zhang L, Qin LQ, Liu AP, Wang PY. Prevalence of risk factors for cardiovascular disease and their associations with diet and physical activity in suburban Beijing, China. J Epidemiol 2010;20:237–43.
12. Neville SE, Boye KS, Montgomery WS, Iwamoto K, Okamura M, Hayes RP. Diabetes in Japan: a review of disease burden and approaches to treatment. Diabetes Metab Res Rev 2009;25:705–16.
13. Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011;94:311–21.
14. Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci (Qassim) 2007;1: V–VIII.
15. Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am 2011;95:875–92.
16. Druet C, Dabbas M, Baltakse V, Payen C, Jouret B, Baud C, et al. Insulin resistance and the metabolic syndrome in obese french children. Clin Endocrinol (Oxf) 2006;64:672–8.
17. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type-2 diabetes. Nat Rev Mol Cell Biol 2008;9:367–77.
18. Correia MLG, Haynes WG. A role for plasminogen activator inhibitor-1 in obesity: from pie to PAI? Arterioscler Thromb Vasc Biol 2006;26:2183–5.
19. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 2010;28:e72–91.
20. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in the liver of streptozotocin-induced diabetic rats. J Nutr 2005;135:2299–304.
21. Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008;38:137–55.
22. Kassan M, Choi SK, Galán M, Lee YH, Trebak M, Matrougui K. Enhanced p22phox expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type-2 diabetic mice. Am J Physiol: Heart Circ Physiol 2014;306: H972–80.
23. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type-2 diabetes. Endocr Rev 2002;23:599–622.
24. Hou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking, and exocytosis. Vitam Horm 2009;80:473–506.
25. Auer RN. Insulin, blood glucose levels, and ischemic brain damage. Neurology 1998;51: S39–43.
26. Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 2004;17:183–90.
27. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI, Tiwari BK, Pandey KB, et al. Markers of oxidative stress during diabetes mellitus, markers of oxidative stress during diabetes mellitus. J Biomarkers 2013:e378790. Doi.org/10.1155/2013/378790. [Article in Press]
28. Leske MC, Wu SY, Hennis A, Connell AM, Hyman L, Schachat A. Diabetes, hypertension, and central obesity as cataract risk factors in a black population. Barbados eye study. Ophthalmology 1999;106:35–41.
29. Alsaad KO, Herzenberg AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 2007;60:18–26.
30. Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol: Regul Integr Comp Physiol 2011;300: R1009–22.
31. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 2006;29:1294–9.
32. Stadie WC. The “Permeability” Hypothesis of the action of insulin. Diabetes 1957;6:446–7.
33. Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 2004;63:658–63.
34. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012;42:484–91.
35. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch Neurol 2007;64:570–5.
36. Orasanu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol 2009;53: S35–42.
37. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008;26:77–82.
38. Einstein M, Greenlee M, Rouen G, Sitlani A, Santoro J, Wang C, et al. Selective glucocorticoid receptor nonsteroidal ligands completely antagonize the dexamethasone-mediated induction of enzymes involved in gluconeogenesis and glutamine metabolism. J Steroid Biochem Mol Biol 2004;92:345–56.
39. BL Mn F. Oral agents in the management of type-2 diabetes mellitus. Am Fam Physician 2001;63:1747–56.
40. Tiikkainen M, Häkkinen AM, Korsheninnikova E, Nyman T, Mäkimattila S, Yki-Järvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type-2 diabetes. Diabetes 2004;53:2169–76.
41. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care 2011;34 Suppl 2: S279–84.
42. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extracts on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 2005;21:756–61.
43. Avilés-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated type-2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1999;131:182–8.
44. Moghetti P, Castello R, Negri C, Tosi F, Perrone F, Caputo M, et al. Metformin effects on clinical features, endocrine, and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 2000;85:139–46.
45. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012;2:320–30.
46. Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008;15:263–73.
47. Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, et al. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type-1 inhibition. Eur J Med Chem 2010;45:2606–12.
48. Tabatabaei-Malazy O, Larijani B, Abdollahi M. A novel management of diabetes by means of strong antioxidants’ combination. J Med Hypotheses Ideas 2013;7:25–30.
49. Ghosh D, Konishi T. Anthocyanins, and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 2007;16:200.
50. Bansal P, Paul P, Mudgal JG, Nayak P, Thomas Pannakal S, Priyadarsini KI, et al. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid-rich fraction of Pilea microphylla (L.) in high-fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol 2012;64:651–8.
51. Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid-rich extract from Eugenia jambolana seeds on streptozotocin-induced diabetic rats. Food Chem Toxicol 2008;46:2376–83.
52. Jorge AP, Horst H, Sousa E de, Pizzolatti MG, Silva FRMB. Insulinomimetic effects of kaempferitrin on glycemia and on the 14C-glucose uptake in rat soleus muscle. Chem Biol Interact 2004;149:89–96.
53. Yiqing Song, JoAnn EM, Julie EB, Howard DS, Simin Liu. Associations of dietary flavonoids with risk of type-2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 2005;24:376–84.
54. Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ. Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radicals Biol Med 2003;34:243–53.
55. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and cell damage in rat pancreas. Pharmacol Res 2005;51:117–23.
56. Ajay M, Achike FI, Mustafa AM, Mustafa MR. Effect of quercetin on altered vascular reactivity in aortas isolated from streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2006;73:1–7.
57. Danielle FP, Luisa HC, Cristiane L, Vanessa M, Maria SR, Alessandro G, et al. Effects of flavonoids on a-glucosidase activity: potential targets for glucose homeostasis. Nutrition 2011;27:1161–7.
58. Babu PVA, Liu D, Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 2013;24:1777–89.
59. Mohan S, Nandhakumar L. Role of various flavonoids: hypotheses on a novel approach to treat diabetes. J Med Hypotheses Ideas 2014;8:1–6.
60. Cazarolli LH, Zanatta L, Jorge AP, de Sousa E, Horst H, Woehl VM, et al. Follow-up studies on glycosylated flavonoids and their complexes with vanadium: their anti-hyperglycemic potential role in diabetes. Chem Biol Interact 2006;163:177–91.
61. Shu XS, Lv JH, Tao J, Li GM, Li HD, Ma N. Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J Ethnopharmacol 2009;124:539–43.
62. Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell B 2006;38:1134–45. ss
63. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002;22:19–34.
64. Sharma RJ, Gupta RC, Singh S, Bansal AK, Singh IP. Stability of anthocyanins and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (“jamun”). Food Chem 2016;190:808–17.
65. Kasetti RB, Rajasekhar MD, Kondeti VK, Fatima SS, Kumar EGT, Swapna S, et al. Antihyperglycemic and antihyperlipidemic activities of methanol: water (4:1) fraction isolated from an aqueous extract of Syzygium alternifolium seeds in streptozotocin-induced diabetic rats. Food Chem Toxicol 2010;48:1078–84.
66. Kim K, Kim H, Kwon J, Lee S, Kong H, Im SA, et al. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phyto-medicine 2009;16:856–63.
67. Kang MC, Kim SY, Kim YT, Kim EA, Lee SH, Ko SC, et al. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel. Carbohydr Polym 2014;99:365–71.
68. Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O. Antidiabetic activity of Aloe vera L. juice. I. A clinical trial in new cases of diabetes mellitus. Phytomedicine 1996;3:241-3.
69. Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem 2014;165:424–43.
70. Sachdewa A, Khemani L. Effect of Hibiscus rosasinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin-induced diabetes in rats. J Ethnopharmacol 2003;89:61–6.
71. Wong KH, Li GQ, Li KM, Razmovski-Naumovski V, Chan K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol 2011;134:584–607.
72. Kadir MF, Bin Sayeed MS, Shams T, Mia MMK. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J Ethnopharmacol 2012;144:605–11.
73. Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 2012;142:65–71.
74. Aneesa A, Shahed ZS, Mehedi H, Shukla RD, Begum R, Anwarul H, et al. Emblica officinalis improves the glycemic status and oxidative stress in STZ induced type-2 diabetic model rats. Asian Pac J Trop Med 2014;21-5.
75. Quine SD, Raghu PS. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacol Rep 2005; 57:610–5.
76. Zeng K, He YN, Yang D, Cao JQ, Xia XC, Zhang SJ, et al. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatase 1B. Eur J Med Chem 2014;81:176–80.
77. Damasceno D, Volpato GT, Sartori TCF, Rodrigues PF, Perin EA, Calderon IMP, et al. Effects of Annona squamosa extract on early pregnancy in rats. Phytomedicine 2002;9:667–72.
78. Pinheiro TSDB, Johansson LAP, Pizzolatti MG, Biavatti MW. Comparative assessment of kaempferitrin from medicinal extracts of Bauhinia forficata Link. J Pharm Biomed Anal 2006;41:431–6.
79. Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006;13:624–9.
80. Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo antidiabetic activity of Morus alba Leaf extract on type II diabetic rats. PLoS One 2012;7:e50619.
81. Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB. Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on the 14C-glucose uptake. Chem Biol Interact 2009;179:407–12.
82. Król-Kogus B, Głód D, Krauze-Baranowska M, Matławska I. Application of one-and two-dimensional high-performance liquid chromatography methodologies for the analysis of C-glycosyl flavones from fenugreek seeds. J Chromatogr A 2014;1367:48–56.
83. Belguith-Hadriche O, Bouaziz M, Jamoussi K, Simmonds MSJ, El Feki A, Makni-Ayedi F. Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chem 2013;138:1448–53.
84. Haghshenas B, Nami Y, Haghshenas M, Barzegari A, Sharifi S, Radiah D, et al. Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian J Pharmacol 2015;10:350–61.
85. Awad E, Cerezuela R, Esteban MÁ. Effects of fenugreek (Trigonella foenum graecum) on gilthead seabream (Sparus aurata L.) immune status and growth performance. Fish Shellfish Immunol 2015;45:454–64.
86. Arshadi S, Bakhtiyari S, Haghani K, Valizadeh A. Effects of fenugreek seed extract and swimming endurance training on plasma glucose and cardiac antioxidant enzymes activity in streptozotocin-induced diabetic rats. Osong Public Health Res Perspectives 2015;6:87–93.
87. Benayad Z, Gómez-Cordovés C, Es-Safi NE. Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J Food Compost Anal 2014;35:21–9.
88. Roberts KT, Cui SW, Wu Y, Williams SA, Wang C, Graham T. Physicochemical evaluation of fenugreek gum and extrusion modified fenugreek gum and effects on starch degradation in bread. Bioact Carbohydr Diet Fibre 2014;4:176–83.
89. Arivalagan M, Gangopadhyay KK, Kumar G. Determination of steroidal saponins and fixed oil content in fenugreek (Trigonella foenum-graecum) genotypes. Indian J Pharm Sci 2013;75:110–3.
90. Chatterjee S, Kumar M, Kumar A. Chemomodulatory effect of Trigonella foenum graecum (L.) seed extract on two stage mouse skin carcinogenesis. Toxicol Int 2012;19:287–94.
91. Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A. In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type-2 diabetes. Food Chem Toxicol 2011;49:125–31.
92. Nakamura S, Nakashima S, Oda Y, Yokota N, Fujimoto K, Matsumoto T, et al. Alkaloids from Sri Lankan curry-leaf (Murraya koenigii) display melanogenesis inhibitory activity: structures of karapinchamines A and B. Bioorg Med Chem 2013;21:1043–9.
93. Yankuzo H, Ahmed QU, Santosa RI, Akter SFU, Talib NA. Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J Ethnopharmacol 2011;135:88–94.
94. Mandal S, Nayak A, Kar M, Banerjee SK, Das A, Upadhyay SN, et al. Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds. Fitoterapia 2010;81:72–4.
95. Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010;81:1129–33.
96. Uvarani C, Jaivel N, Sankaran M, Chandraprakash K, Ata A, Mohan PS. Axially chiral biscarbazoles and biological evaluation of the constituents from Murraya koenigii. Fitoterapia 2014;94:10–20.
97. Ningappa MB, Dhananjaya BL, Dinesha R, Harsha R, Srinivas L. Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chem 2010;118:747–50.
98. Kavalalı G, Tuncel H, Göksel S, Hatemi HH. Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic rats. J Ethnopharmacol 2003;84:241–5.
99. Upton R. Stinging nettles leaf (Urtica dioica L.): extraordinary vegetable medicine. J Herb Med 2013;3:9–38.
100. Farag MA, Weigend M, Luebert F, Brokamp G, Wessjohann LA. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry 2013;96:170–83.
101. Nishimura M, Ohkawara T, Kanayama T, Kitagawa K, Nishimura H, Nishihira J. Effects of the extract from roasted chicory (Cichorium intybus L.) root containing inulin-type fructans on blood glucose, lipid metabolism, and fecal properties. Afr J Tradit Complementary Altern Med 2015;5:161–7.
102. Deutschländer MS, Lall N, Van de Venter M, Hussein AA. Hypoglycemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark. J Ethnopharmacol 2011;133:1091–5.
103. Amjad MS. Ethnobotanical profiling and floristic diversity of Bana Valley, Kotli (Azad Jammu and Kashmir), Pakistan. Asia Pac J Trop Biomed 2015;5:292–9.
104. Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 2013;146:331–46.
105. Casanova LM, da Silva D, Sola-Penna M, de Magalhães Camargo LM, de Moura Celestrini D, Tinoco LW, et al. Identification of chicoric acid as a hypoglycemic agent from Ocimum gratissimum leaf extract in a biomonitoring in vivo study. Fitoterapia 2014;93:132–41.
106. Agunu A, Yusuf S, Andrew GO, Zezi AU, Abdurahman EM. Evaluation of five medicinal plants used in diarrhoea treatment in Nigeria. J Ethnopharmacol 2005;101:27–30.
107. Kayani WK, Rani R, Ihsan-ul-Haq, Mirza B. Seasonal and geographical impact on the morphology and 20-hydroxyecdysone content in different tissue types of wild Ajuga bracteosa Wall. ex Benth. Steroids 2014;87:12–20.
108. Jain A, Katewa SS, Galav PK, Sharma P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. J Ethnopharmacol 2005;102:143–57.
109. Saleem R, Ahmad M, Hussain SA, Qazi AM, Ahmad SI, Qazi MH, et al. Hypotensive, hypoglycaemic and toxicological studies on the flavonol C-glycoside shamimin from Bombax ceiba. Planta Med 1999;65:331–4.
110. Neto MCL, de Vasconcelos CFB, Thijan VN, Caldas GFR, Araújo AV, Costa-Silva JH, et al. Evaluation of antihyperglycaemic activity of Calotropis procera leaves extract on streptozotocin-induced diabetes in Wistar rats. Rev Bras Farmacogn 2013;23:913–9.
111. Senthil Kumar M, Sripriya R, Vijaya Raghavan H, Sehgal PK. Wound healing potential of Cassia fistula on infected albino rat model. J Surg Res 2006;131:283–9.
112. Tag H, Kalita P, Dwivedi P, Das AK, Namsa ND. Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. J Ethnopharmacol 2012;141:786–95.
113. Zia-ur-rehman M, Mirajab K, Mushtaq A. Potential for Pakistani traditional medicinal plants to combat diabetes. J Tradit Chin Med 2014;34:488–90.
114. Rahman MS, Akter R, Mazumdar S, Islam F, Mouri NJ, Nandi NC, et al. Antidiabetic and antidiarrhoeal potentials of ethanolic extracts of aerial parts of Cynodon dactylon pers. Asia Pac J Trop Biomed 2015;5:658–62.
115. Bera Sudipta, Dednath Sujit Kumar, Pramanik Goutam, Dey Monalisha. Evalution of antidiabetic activity and histological study of Cyperus kyllinga Endl. Roots 2011;3:343-6.
116. Raut NA, Gaikwad NJ. Antidiabetic activity of hydro-ethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia 2006;77:585–8.
117. Ahmad B, Khan M, Shah N, Khan R. In vitro antioxidant potential of Dicliptera roxburghiana. BMC Complementary Altern Med 2013;13:140.
118. Ummara U, Bokhari TZ, Altaf A, Younis U, Dasti AA. Pharmacological study of shogran valley flora, Pakistan. Int J Sci Eng Res 2013;4:1–9.
119. Khoobchandani M, Ojeswi BK, Ganesh N, Srivastava MM, Gabbanini S, Matera R, et al. Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: comparison with various aerial and root plant extracts. Food Chem 2010;120:217–24.
120. Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, et al. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem 2005;53:2475–82.
121. Virendra Singh, Mahendra Singh, Smila Shukla. Antidiabetic effect of Flacourtia indica merr in streptozotocin induced diabetic rat. Global J Pharmacol 2011;5:147-52.
122. Bhatia H, Sharma YP, Manhas RK, Kumar K. Ethnomedicinal plants used by the villagers of district Udhampur, J and amp; K, India. J Ethnopharmacol 2014;151:1005–18.
123. Srivastava S, Choudhary GP. Pharmacognostic and pharmacological study of fumaria vaillantii loisel: a review. J Pharmacogen Phytochem 2014;3:194–7.
124. Singh GK, Rai G, Chatterjee SS, Kumar V. Beneficial effects of fumaria on chronic stress-induced neurobehavioral and biochemical perturbations in rats. Chin Med 2012;3:49–60.
125. Tam JCW, Lau KM, Liu CL, To MH, Kwok HF, Lai KK, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol 2011;134:831–8.
126. Saleem S, Jafri L, Haq I ul, Chang LC, Calderwood D, Green BD, et al. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014;156:26–32.
127. Ghule AE, Jadhav SS, Bodhankar SL. Effect of ethanolic extract of seeds of Linum usitatissimum (Linn.) in hyperglycemia associated ROS production in PBMNCs and pancreatic tissue of alloxan induced diabetic rats. Asian Pac J Trop Dis 2012;2:405–10.
128. Sharma J, Varma DR. A review on endangered plant of Mallotus philippenesis (Lam.) M. Arg. Pharmacologyonline 2011;3:1256–65.
129. Nandhini V, DOSS DDVA. Antidiabetic effect of Mallotus philippinensis in streptozotocin induced diabetic rats. Int J Pharma Bio Sci 2013;4:653–8.
130. He J, Ji B, Li Y, Zhang X. Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia Pac J Clin Nutr 2007;16:427.
Statistics
684 Views | 1104 Downloads
How to Cite
S., J. P., and E. P. Sabina. “GLOBAL CURRENT TRENDS IN NATURAL PRODUCTS FOR DIABETES MANAGEMENT: A REVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 8, no. 4, Apr. 2016, pp. 20-28, https://innovareacademics.in/journals/index.php/ijpps/article/view/10515.
Section
Review Article(s)