EVALUATION OF BIOLOGICAL ACTIVITIES OF NANOCRYSTALLINE TETRAGONAL ZIRCONIA SYNTHESIZED VIA SOL-GEL METHOD

Authors

  • V. G. Thakare Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444 602 India
  • P. A. Joshi
  • R. R. Godse
  • V. B. Bhatkar
  • P. A. Wadegaokar
  • S. K. Omanwar

Keywords:

Keyword, Nanocrystalline Zirconia, sol-gel route, antimicrobial action, biomedical application

Abstract

Objective: The objective of the following study was a synthesis of nanocrystalline tetragonal zirconia (ZrO2) using simple sol–gel method and evaluation of its structural and biological properties.

Methods: The sample was characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and evaluated for cell growth study using 3T3 mouse fibroblast cells and for degradation using Phosphate Buffered Saline (PBS) solution. The synthesized materials were also evaluated for their antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial strains.

Results: The XRD pattern shows that the tetragonal phase of nanocrystalline zirconia was obtained at relatively low temperature i.e. 300 °C. The FESEM images showed that the prepared sample consists of particles in the range of 35-69 nm and homogenous particle size distribution. The TEM images confirmed the results shown by FESEM images. The sample of zirconia has excellent tissue biocompatibility, higher cell growth and does not show the toxicity towards normal 3T3 mouse fibroblast cells. The result of qualitative antibacterial tests revealed that the nanocrystalline zirconia had an important inhibitory activity on E. coli and S. aureus. The sample shows stability at the physiological condition and does not show degradation.

Conclusion: Nanocrystalline tetragonal zirconia shows higher cell growth and efficient antibacterial activity against E. coli and S. aureus bacterial pathogen and also it is stable at the physiological condition. Hence, it can be used for various biomedical applications.

Keywords: Nanocrystalline zirconia, Sol-gel route, Antimicrobial action, Biomedical application

Downloads

Download data is not yet available.

References

Piconi C, Maccauro G. Review: zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25.

Thamaraiselvi TV, Rajeswari SV. Biological evaluation of bioceramic materials-a review. Trends Biomaterials Artificial Organs 2004;18:9-17.

Thakare VG. Progress in synthesis and applications of zirconia. Int J Eng Res Dev 2012;5:25-8.

Heshmatpour F, Aghakhanpour R. Synthesis and characterization of nanocrystalline zirconia powder by a simple sol-gel method with glucose and fructose as organic additives. Powder Technol 2011;205:193-200.

Oetzel C, Clasen R. Preparation of zirconia dental crowns via Electrophoretic deposition. J Mater Sci Technol 2011;27:8130-7.

Elshazly ES, Elhout SM, Ali M. Yttria tetragonal zirconia biomaterial: Kinetic investigation. J Mater Sci Technol 2011;27:332-7.

Luo J, Ball R, Stevens R. Gadolina doped ceria/yttria stabilized zirconia electrolytes for solid oxide fuel cell application. J Mater Sci 2004;39:235-40.

Lee J. Review on zirconia air-fuel ratio sensors for automotive application. J Mater Sci 2003;38:4247-57.

Krumov E, Dikova J, Starbova K, Popov D, Kolev K, Laude L. Thin ZrO2 sol-gel films for catalytic application. J Mater Sci Technol 2003;14:332-7.

Siddiquia M, Wassila A, Otaibib A, Mohfouza R. Effect of precursor on the morphology and size of ZrO2 nanoparticles synthesized by sol-gel method in non-aqueous medium. Mater Res 2012;15:986-9.

Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave-Assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 2005;15:1708-15.

Dev VG, Venugopal J, Sudha S, Deepika G, Ramakrishna S. Dyeing and antimicrobial characteristics of chitosan treated wool fabric with henna dye. Carbohyd Polym 2009;75:646-50.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86.

Mohamed G. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. J Ind Text 2012;41:222-40.

Fenno. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater 2014;10:3723–32.

Nathanael AJ, Lee JH, Mangalaraj D, Hong SI, Rhee YH. Multifunctional properties of hydroxyapatite/titania bio-nano-composites: bioactivity and antimicrobial studies. Powder Technol 2012;228:410–5.

Jaenicke S, Chuah GK, Raju V, Nie Y. Structural and morphological control in the preparation of high surface area zirconia. Catal Surv Asia 2008;12:153-69.

Zhou J, Mah J, Shrotriya P, Mercer C, Soboyejo WO. Contact damage in an yttria stabilized zirconia: implications for biomedical applications. J Mater Sci: Mater Med 2007;18:71-8.

Garmendia N, Santacruz I, Moreno R, Obieta I. Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing. J Mater Sci: Mater Med 2010;21:1445–51.

Chevalier J. What future for Zirconia as a biomaterial?. Biomaterials 2006;27:535–43.

Septawender R, Sofiyaningsih N, Sutardi S. The zirconia phase transformation in the preparation of nano zirconia by calcining a gel emulsion precursor. J Ceramic Proc Res 2011;12:561-6.

Kim JS, Lee DH, Kang S, Bae DS, Paek HY, Na MK. Synthesis and microstructure of zirconia nanopowder by glycothermal process. Trans Nonferrous 2009;19:88-91.

Chin MC. The phase transformation and crystallization kinetics of (1-x) Li2O–xNa2O–Al2O3–4SiO2 glasses. Thermochimica 2013;567:93-9.

Liu X, Lu G, Yan Z, Lu G, Yan Z. Preliminary synthesis and characterization of mesoporous nanocrystalline zirconia. J Nat Gas Chem 2003;12:161-6.

Jose C, Mastelaro VR, Nascente P, Zotin JB, Longo E, Leite ER. Oxide surface modification: synthesis and characterization of zirconia-coated alumina. J Colloid Interface Sci 2010;343:256–62.

Dwivedi R, Maurya A, Verma A, Prasad R, Bartwal KS. Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd 2011;509:6848-51.

Gowri S, Gandhi R, Sundraranjan M. Structural, Optical, Antibacterial and antifungal properties of zirconia nanoparticles by the biobased protocol. J Mater Sci Technol 2014;30:782-90.

Massodiyeh F, Karimi J, Khanchi AR, Mozdianfard MR. Zirconia nanoparticle synthesis in sub and supercritical water-particle morphology and chemical equilibria. Powder Technol 2015;269:461-8.

Trusova EA, Khrushcheva AA, Vokhmintcev KV. Sol–gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc 2012;32:1977-81.

Tyagi B, Sidhpuria K, Shaik B, Jasra RV. Synthesis of nanocrystalline zirconia using sol–gel and precipitation techniques. Ind Eng Chem Res 2006;45:8643–50.

Bagchi B, Basu RN. A simple sol-gel approach to synthesize nanocrystalline 8 mol% yttria stabilized zirconia from metal-chelate precursors: microstructural evolution and conductivity studies. J Alloys Compd 2015;647:602-26.

Celzard A, Mareche JF. Applications of the sol–gel process using well-tested recipes. J Chem Educ 2002;79:854–9.

Ward DA, Ko EI. Preparing catalytic materials by the sol–gel method. Ind Eng Chem Res 1995;34:421–33.

Limban C, Marutescu L, Chifiriuc MC. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules 2011;16 Suppl 9:7593–607.

Saviuc. Phenotypical studies of raw and nanosystem embedded Eugenia caryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains. Biointerface Res Appl Chem 2011;1 Suppl 3:111–8.

Chifiriuc MC, Palade R, Israil AM. Comparative analysis of disk diffusion and liquid medium microdilution methods for testing the antibiotic susceptibility patterns of anaerobic bacterial strains isolated from intraabdominal infections. Biointerface Res Appl Chem 2011;1 Suppl 6:209–20.

Marutescu L, Limban C, Chifiriuc MC, Missir AV, Chirita IC, Caproiu MT. Studies on the antimicrobial activity of new compounds containing thiourea function. Biointerface Res Appl Chem 2011;1 Suppl 6:236–41.

Grumezescu. In vitro assay of the antimicrobial activity of Fe3O4 and CoFe2O4/oleic acid-core/shell on clinical isolates of bacterial and fungal strains. J Optoelectron Adv Mater 2010;4 Suppl 11:1798–801.

Chifiriuc. Bacterial adherence to the cellular and inert substrate in the presence of CoFe2O4 and Fe3O4/oleic acid-core/shell. Dig J Nanomater Biostructures 2011;6 Suppl 1:37–42.

Suciu C, Gagea L, Hoffmann AC, Mocean M. Sol–gel production of zirconia nanoparticles with a new organic precursor. Chem Eng Sci 2006;61:7831–5.

Suciu C, Hoffmann AC, Kosinski P. Obtaining YSZ nanoparticles by the sol–gel method with sucrose and pectin as organic precursors. J Mater Process Technol 2008;202:316–20.

Scherrer P. Determination of the size and internal structure of colloidal particles using X-rays. Math-Phys Klasse 1918;2:98-100.

Pattersons A. The scherrer formula for X-ray particle size determination. Phys Rev 1939;56 Suppl 10:978-80.

Langford J, Wilson A. Nanoscience and the scherrer equation versus the scherrer–gottingen equation. J Appl Crystallogr 1978;11:102-13.

Kim SH. Antibacterial activity of silver-nanoparticles against staphylococcus aureus and escherichia coli. Korean J Microbiol Biotechnol 2011;39:77–85.

Fernandes. Improving antimicrobial activity of dental restorative materials. In: Virdi MS. 1sted. Emerging trends in oral health sciences and dentistry; 2015. p. 65-82.

Published

01-06-2016

How to Cite

Thakare, V. G., P. A. Joshi, R. R. Godse, V. B. Bhatkar, P. A. Wadegaokar, and S. K. Omanwar. “EVALUATION OF BIOLOGICAL ACTIVITIES OF NANOCRYSTALLINE TETRAGONAL ZIRCONIA SYNTHESIZED VIA SOL-GEL METHOD”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 6, June 2016, pp. 125-31, https://innovareacademics.in/journals/index.php/ijpps/article/view/11095.

Issue

Section

Original Article(s)