THE PROSPECT, PROMISES AND HINDRANCES OF STATIN BASE MOLECULES: LOOK BACK TO LOOK FORWARD

Authors

  • Meor Mohd Affandi Mmr
  • Minaketan Tripathy Laboratory Fundamental of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
  • Aba Majeed

Keywords:

Statin based molecules, Poor solubility, Solubility enhancement

Abstract

This review narrates the importance of the statin-based molecules and their inherent challenges during their administration. The chronological appearance of the statin, their source and the journey with time so to evolve as one of the successful cholesterol-lowering agents to prevent the morbidity and mortality especially related to coronary heart disease have been illustrated along with their recent utilities in neurodegenerative diseases. The statins, because of their respective physicochemical characters pose several challenges in regards to their effective administration to the patients. One of the major issues related their poor bioavailability is their aqueous solubility. The different approaches for the enhancement of solubility and hence bioavailability have been discussed systematically. This review finally suggests the importance of more related research in regards to their successful administration so to have greater realization of therapeutics efficiency.

Keywords: Statin-based molecules, Poor solubility, Solubility enhancement

Downloads

Download data is not yet available.

References

Tripathy S, Kar PR. Albendazole solubilization in aqueous solutions of nicotinamide: thermodynamics and solute-solvent interaction. Orien J Chem 2013;29:1-5.

Tripathy S, Kar PR, Majeed ABA. Albendazole solid dispersions in nicotinamide: solid state characterization and in vitro dissolution study. Int J Pharma Bio Sci 2013;4:306-19.

Solanki CS, Tripathy S, Tripathy M, Dash UN. Studies on the solute, solvent interaction of nimesulide in aqueous solutions of hydrotropic agents at different temperatures E J Chem 2010;7:S223-S30.

Rúbia M, Vargas WD, Raffin FN, Flávio T, Lima AD. Strategies used for to improve aqueous solubility of simvastatin : a systematic review. J Basic Appl Sci 2012;33:497–507.

Gordon LA, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413–20.

Solanki CS, Mishra P, Talari MK, Tripathy M, Dash UN. Conductometric study of nimesulide in aqueous solutions of hydrotropic agents at different temperatures. E J Chem 2012;9:21-6.

Arakaw T, Kita Y, Koyama H. Solubility enhancement of gluten and organic compounds by arginine. Int J Pharm 2008;355:220–3.

Kasim N, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 2004;1:85–96.

William BK. Clinical misconceptions dispelled by epidemiological research. Circulation 1995;92:3350–60.

Daniel S, Antonio M, Gotto J. Preventing coronary artery disease by lowering cholesterol levels : Fifty years from bench to bedside. JAMA 1999;282:2043–50.

Kannel B. Range of serum cholesterol values in the population developing coronary artery disease. Am J Cardiol 1995;76:69C–77C.

Mariottia S, Capocacciaa R, Farchia G, Menottia A, Verdecchiaa AK. Age, period, cohort and geographical area effects on the relationship between risk factors and coronary heart disease mortality: 15-year follow-up of the European cohorts of the seven countries study. J Chronic Dis 1986;39:229–42.

Bhatnagar D, Soran H, Durrington PN. Hypercholesterolaemia and its management. Br Med J 2008;337:503–8.

Lazar HL. Role of statin therapy in the coronary bypass is patient. Ann Thorac Surg 2004;78:730–40.

Otokozawa S, Ai M, Asztalos BF, White CC, Demissie-Banjaw S, Cupples LA, et al. Direct assessment of plasma low-density lipoprotein and high-density lipoprotein cholesterol levels and coronary heart disease: results from the Framingham offspring study. Atherosclerosis 2010;213:251–5.

Després JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B. Hdl-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis 2000;153:263–72.

Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006;112:71–105.

Liu J, Sempos CT, Donahue RP, Dorn J, Trevisan M, Grundy SM. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol 2006;98:1363–8.

Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995;15:551–61.

Jonathan AT. Lovastatin and beyond the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discovery 2003;2:517–26.

Kirby T. Cataracts produced by triparanol (MER/29). Trans Am Ophthal Soc 1967;65:494–543.

Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B 2010;86:484–93.

Watanabe Y, Ito T, Saeki M, Kuroda M, Tanzawa K, Mochizuki M, et al. Hypolipidemic effects of CS-500 (ML-236B) in WHHL-rabbit, a heritable animal model for hyperlipidemia. Atherosclerosis 1981;38:27–31.

Kuroda M, Tsujita Y, Tanzawa K, Endo A. Hypolipidemic effects in monkeys of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Lipids 1979;14:585–9.

Tsujita Y, Kuroda M, Tanzawa K, Kitano N, Endo A. Hypolipidemic effects in dogs of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Atherosclerosis 1979;32:307-13.

Hiroshi M, Takeshi S, Yasuyuki S, Akira Y, Akira W, Takanobu W, et al. Reduction of serum cholesterol in heterozygous patients with familial hypercholesterolemia-additive effects of compactin and cholestyramine. N Engl J Med 1983;308:609–13.

Alberts W, Chen J, Kuron G, Hunt V, Huff J, Hoffman C. Mevinolin: a highly potent competitive inhibitor of hydroxymethyl-glutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 1980;77:3957–61.

Tobert JA, Hitzenberger G, Kukovetz WR, Holmes IB, Jones KH. Rapid and substantial lowering of human serum cholesterol by mevinolin (MK-803), an inhibitor of hydroxymethyl-glutaryl-coenzyme A reductase. Atherosclerosis 1982;41:61–5.

Richard JH, Donald BH, Illingworth DR, Lees RS, Stein EA, Tobert JA, et al. Lovastatin (Mevinolin) in the treatment of heterozygous familial hypercholesterolemia: A multicenter study. Ann Intern Med 1987;10:609–15.

Tobert JA. A Multicenter comparison of lovastatin and cholestyramine therapy for severe primary hypercholesterolemia. JAMA 1988;260:359–66.

Doty JD, Xhignesse M, Frohlich J, Hayden ML, Vanetta H, Mishkel MA, et al. A multicenter comparison of lovastatin and probucol for the treatment of severe primary hypercholesterolemia. Am J Cardiol 1990;66:22b–30b.

Bradford RH, Charles LS, Athanassios NC, Carlos D, Maria D, Frank A, et al. Medicine expanded clinical evaluation of lovastatin (EXCEL) study results in I_ efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. JAMA Int Med 1991;151:43–9.

Khan S, Teitz DS, Jemal M. Kinetic analysis by HPLC-Electrospray mass spectrometry of the pH-dependent acyl migration and solvolysis as the decomposition pathways of Ifetroban 1-O-acyl glucuronide. Anal Chem 1998;70:1622–8.

Istvan E. Statin inhibition of HMG-CoA reductase: a 3-dimensional view. Atheroscler Suppl 2003;4:3–8.

Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. J Pharmacol Exp Ther 1999;84:413–28.

Hobbs HH, Brown MS, Joseph LG. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992;1:445–66.

Yang DJ, Hwang LS. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J Chromatogr A 2006;1119:277–84.

Alberts AW. Discovery, biochemistry and biology of lovastatin. Am J Cardiol 1988;62:J10–J5.

Donald DCJ, Whitfield LR, Gibson DM, Sedman AJ, Posvar EL. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin Pharmacol Ther 1996;60:687–95.

Tse FL, Jaffe JM, Troendle A. Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers. J Clin Pharmacol 1992;32:630–8.

Pan HY, Devault AR, Wang-Iverson D, Ivashkiv E, Swanson BN, Ugerman AA. Comparative pharmacokinetics and pharmacodynamics of pravastatin and lovastatin. J Clin Pharmacol 1990;30:1128–35.

Warwick MJ, Dane AL, Raza A, Schneck DW. Single and multiple-dose pharmacokinetics and safety of the new HMG-CoA reductase inhibitor ZD4522. Atherosclerosis 1999;151:39-41.

Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitor. Clin Pharmacokinet 1997;32:403–25.

Martin PD, Warwick MJ, Dane AL, Brindley C, Short T. Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers. Clin Ther 2003;25:2553–63.

Serajuddin AT, Ranadive SA, Mahoney EM. Relative lipophilicities, solubilities, and structure-pharmacological considerations of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin. J Pharm Sci 1991;80:830–4.

Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005;33:537–46.

Benet LZ, Wu CY, Hebert MF, Wacher VJ. Intestinal drug metabolism and anti transport processes: a potential paradigm shift in oral drug delivery. J Controlled Release 1996;39:139–43.

Hamelin BA, Tergeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 1998;19:26–37.

Bottorff M. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. Am J Cardiol 2000;85:1846–7.

Jacobsen W, Kuhn B, Soldner A, Kirchner G, Sewing K, Kollman PA, et al. Lactonization is the critical first step in the disposition of the 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000;28:1369–78.

Sica DA, Gehrt T. Rhabdomyolysis, and statin therapy: relevance to the elderly. Am J Geriatr Cardiol 2002;11:48–55.

Muscari A, Puddu GM, Puddu P. Lipid-lowering drugs: are adverse effects predictable and reversible? Cardiology 2002;97:115–21.

Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000;101:207–13.

Singhvi SM, Pan HY, Morrison RA, Willard DA. Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol 1990;29:239–43.

Schachter M. Statins, rug interactions and cytochrome P450. Br J Cardiol 2001;8:311–7.

Punitha S, Kumar KLS. Statin therapy and their formulation approches: A review. Int J Pharm Sci 2011;3:23–6.

Olsson G, Pears J, Mckellar J, Mizan J, Raza A. Effect of rosuvastatin on low-density lipoprotein cholesterol in patients with hypercholesterolemia. Am J Cardiol 2001;88:504–8.

Jones PH, Davidson MH, Stein E, Bays HE, Mckenne JM, Miller E, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol 2003;92:152–60.

Donald MB. A general assessment of the safety of HMG CoA reductase inhibitors (statins). Curr Atheroscler Rep 2002;4:34–41.

Hristov M, Fach C, Becker C, Heussen N, Liehn E, Blindt R, et al. Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis 2007;192:413–20.

Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001;5:378–87.

Wood WG, Eckert GP, Igbavboa U, Muller WE. Statins and neuroprotection: a prescription to move the field forward. Ann N Y Acad Sci 2010;1199:69–76.

Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 2008;14:37–44.

Merx MW, Weber C. Benefits of statins beyond lipid lowering. Drug Discovery Today: Dis Mech 2008;5:e325–e31.

Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA 2000;283:3205–10.

Nassief A, Marsh J. Statin therapy for stroke prevention. Stroke 2008;39:1042–48.

Wahner AD, Bronstein JM, Bordelon YM, Ritz B. Statin use and the risk of Parkinson disease. Neurology 2008;70:1418–22.

Eckert GP, Wood WG, Muller W. Statins: drugs for Alzheimer’s disease? J Neural Transm 2005;112:1057–71.

Neuhaus O, Hartung H. Evaluation of atorvastatin and simvastatin for treatment of multiple sclerosis. Expert Rev Neurother 2007;7:547–56.

Naseem A, Olliff CJ, Martini LG. Effects of plasma irradiation on the wettability and dissolution of compacts of griseofulvin. Int J Pharm 2004;269:443–50.

Hörter D, Dressman J. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Delivery Rev 2001;46:75–87.

Sekiguchi K, Obi N. Studies on the absorption of eutectic mixture. 1. A comparison of the behavior of a eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull 1961;9:866–72.

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971;60:1281–302.

Patel R, Patel M. Preparation, characterization, and dissolution behavior of a solid dispersion of simvastatin with polyethylene glycol 4000 and polyvinylpyrrolidone K30. J Dispersion Sci Technol 2008;29:193-204.

Nováková L, Vlcková H, Satínský D, Sadílek P, Solichová D, Bláha M, et al. Ultra high-performance liquid chromatography tandem mass spectrometric detection in clinical analysis of simvastatin and atorvastatin. J Chromatogr B: Anal Technol Biomed Life Sci 2009;877:2093–103.

Pandya P, Gattani S, Jain P, Khirwal L, Surana S. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: in vitro-in vivo evaluation. AAPS PharmSciTech 2008;9:1247–52.

Rao M, Mandage Y, Thanki K, Bhise S. Dissolution improvement of simvastatin by surface solid dispersion technology. Dissolution Technol 2010;27–34. Doi.org/10.14227/DT170210P27. [Article in Press]

Jatwani S, Rana AC, Singh G, Aggarwal G. Solubility and dissolution enhancement of simvastatin using the synergistic effect of hydrophilic carriers. Der Pharm Lett 2011;3:280–93.

Javeer SD, Patole R, Amin P. Enhanced solubility and dissolution of simvastatin by HPMC-based solid dispersions prepared by hot melt extrusion and spray-drying method. J Pharm Invest 2013;43:471–80.

Shaikh K, Patwekar S, Payghan S, D’souza J. Dissolution and stability enhancement of poorly water soluble drug–lovastatin by preparing solid dispersions. Asian J Biomed Pharm Sci 2011;1:24–31.

Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech 2008;9:1262–9.

Uddin R, Ali F, Biswas SK. Water solubility enhancement of atorvastatin by solid dispersion method. Stam J Pharm Sci 2010;3:43–6.

Shayanfar A, Ghavimi H, Hamishekar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Pharm Sci 2013;16:577–87.

Choudharya A, Ranaa AC, Aggarwalb G, Kumara V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B 2012;2:421–8.

Swathi T, Vamshi KM, Sudheer KD, Krishnaveni J. Enhancement of solubility and dissolution rate of rosuvastatin by using solid dispersion technique. J Pharm Sci Innovation 2013;2:36–40.

Patel RP, Patel M. Preparation, and evaluation of inclusion complex of the lipid-lowering drug lovastatin with B-cyclodextrin. Dhaka Univ J Pharm Sci 2007;6:25–36.

Csempesz F, Süle A, Puskás I. Induced surface activity of supramolecular cyclodextrin–statin complexes: relevance in drug delivery. Colloids Surf 2010;354:308–13.

Valentine JS, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res 1997;14:556–67.

Frömming KH, Szejtli J. Cyclodextrins in: cyclodextrins in pharmacy. 1ed. Dordrecht, The Netherland: Kluwer Academic Publishers; 1994. p. 1-10.

Doijad RC, Kanakal MM, Manvi F. Studies on piroxicam β-cyclodextrin inclusion complexes. Indian Pharm 2007;6:94–8.

Aly AM, Qato MK, Ahmad MO. Enhancement of the dissolution rate and bioavailability of glipizide through cyclodextrin inclusion complex. Pharm Technol 2003;27:54–62.

Ghorab MK, Adeyeye M. Elucidation of solution state complexation in wet-granulated oven-dried Ibuprofen and β-cyclodextrin: FT-IR and 1H-NMR studies. Pharm Dev Technol 2001;6:315–24.

Al-Marzouqi AH, Shehatta I, Jobe B. Phase solubility and inclusion complex of itraconazole with beta-cyclodextrin using supercritical carbon dioxide. J Pharm Sci 2006;95:292–304.

Taupitz T, Dressman JB, Klein S. New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. Eur J Pharm Biopharm 2013;84:208–18.

Mandal D, Ojha PK, Nandy BC, Kanta L. Effect of carriers on solid dispersions of simvastatin (Sim): Physico-chemical characterizations and dissolution studies. Lett Der Pharm 2010;2:47–56.

Patel RP, Patel MM. Solid-state characterization and dissolution properties of lovastatin hydroxypropyl-β-cyclodextrin inclusion complex. Pharm Technol 2007. Available from: http://www.pharmtech.com/pharmtech/Analytics/Solid-State-Characterization-and-Dissolution-Prope/ArticleStandard/Article/detail/400647. [Last accessed on 16 Jun 2014].

Akbari BV, Valaki BP, Maradiya VH, Akbari AK, Vidyasagar G. Enhancement of solubility and dissolution rate of rosuvastatin calcium by complexation with B-cyclodextrin. Int J Pharm Biol Arch 2011;2:511–20.

Jun SW, Kim MS, Kim JS, Park HJ, Lee S, Woo JS, et al. Preparation and characterization of simvastatin hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 2006;66:413-7.

Swarbrick J. Encyclopedia of pharmaceutical technology. 3ed. London: Informa Healthcare; 2006. p. 4370-80.

Margulis-Goshen K, Magdassi S. Formation of simvastatin nanoparticles from microemulsion. Nanomed Nanotech Biol Med 2009;5:274–81.

Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci 2009;330:443–8.

Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development ofself-micro emulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm 2004;274:65–73.

Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B 2013;112:337–43.

Grau MJ, Kayser O, Müller RH. Nanosuspensions of poorly soluble drugs-reproducibility of small scale production. Int J Pharm 2000;196:155–9.

Chavhan S, Joshi G, Petkar K, Sawant K. Enhanced bioavailability and hypolipidemic activity of simvastatin formulations by particle size engineering: Physicochemical aspects and in vivo investigations. Biochem Eng J 2013;79:221–9.

Zhang Z, Huihui B, Zhiwei G, Yan H, Fang G, Yaping L. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm 2010;394:147-53.

Mandal S. Microemulsion drug delivery system: design and development for oral bioavailability enhancement of lovastatin. SA Pharm J 2011;78:44–50.

Hojjati M, Yamini Y, Khajeh M, Vatanara A. Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations. J Supercrit Fluids 2007;41:187–94.

Nanjwade K, Derkar BK, Bechra GM, Nanjwade HK, Manvi FV. Design and characterization of nanocrystals of lovastatin for solubility and dissolution enhancement. J Nanomed 2011;2:1-7.

Anwar M, Warsi MH, Mallick N, Akhter S, Gahoi S, Jain GK, et al. Enhanced bioavailability of nano-sized chitosan-atorvastatin conjugate after oral administration to rats. Eur J Pharm Sci 2011;44:241–9.

Arunkumar N, Deecaraman M, Rani C, Mohanraj K, Kumar KV. Preparation and solid state characterization of atorvastatin nanosuspensions for enhanced. Int J PharmTech Res 2009;1:1725–30.

Kim JS, Kim MS, Park HJ, Jin SJ, Lee S, Hwang SJ. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm 2008;359:211–9.

Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 2008;69:454–65.

Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm 2009;374:106–13.

Svenson S, Tomalia D. Dendrimers in biomedical applications-reflections on the field. Adv Drug Delivery Rev 2012;64:102–15.

Kulhari H, Pooja D, Prajapati SK, Chauhan AS. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm 2011;405:203–9.

Wu C, Wang J, Hu Y, Zhi Z, Jiang T, Zhang J, et al. Development of a novel starch-derived porous silica monolith for enhancing the dissolution rate of poorly water soluble drug. Mater Sci Eng C 2012;32:201–6.

Zhang Y, Wang H, Gao C, Li X, Li L. Highly ordered mesoporous carbon nanomatrix as a new approach to improve the oral absorption of the water-insoluble drug, simvastatin. Eur J Pharm Sci 2013;49:864–72.

Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm 2012;80:535–43.

Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci 2010;5:50–60.

Kamble PR, Shaikh KS, Chaudhari PD. Application of liquisolid technology for enhancing solubility and dissolution of rosuvastatin. Adv Pharm Bull 2014;4:197–204.

Gavali SM, Pacharane SS, Sankpal SV, Jadhav KR, Kadam VJ. Liquisolid compact : a new technique for enhancement of drug dissolution. Int J Res Pharm Chem 2011;1:705–13.

Spiros SS, Charles IJ, Bhagwan DR. Powdered solution technology: principles and mechanism. Pharm Res 1992;9:1351–8.

Kapure VJ, Pande VV, Deshmukh PK. Dissolution enhancement of rosuvastatin calcium by liquisolid compact technique. Int J Pharm 2013;274:1–9.

Singh H, Philip B, Pathak K. Preparation, characterization and pharmacodynamic evaluation of fused disperions of simvastatin using PEO-PPO Block Co polymer. Iran J Pharm Res 2012;11:443-5.

Bolla N, Chandra S, RajanRaju CH, Koteswara Rao, GSN, Uma Devi P. Improvement of simvastatin solubility using natural polymers by solid dispersion technique Int J Pharm Res Biomed Anal 2013;2:1-6.

Bobe KR, Subrahmanya CR, Sarasija S, Gaikwad DT. Formulation and evaluation of solid dispersion of atorvatstatin with various carriers. Pharm Globale Int J Comprehen Pharm 2011;11:34-6.

Lakshmi NV, Bhaskar J, Venkateswarlu G, Vijaya BK. Enhancement of dissolution rate of atorvastatin calcium using solid dispersions by dropping method. Int J PharmTech Res 2011;3:652-9.

Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 2008;69:454–65.

Vyas A. Preparation, characterization and pharmacodynamic activity of supramolecular and colloidal systems of rosuvastatin–cyclodextrin complexes. J Inclusion Phenom Macrocyclic Chem 2013;76:37–46.

Nainwal P, Sinha P, Singh A, Nanda D, Jain DA. A Comparative solubility enhancement study of rosuvastatin using solubilization techniques. Int J Appl Biol Pharm Technol 2011;2:14-8.

Fattahia A, Karimi-Sabetb J, Keshavarza A, Golzaryc A, Rafiee-Tehrania M, Dorkoosh FA. Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. J Supercrit Fluids 2016;107:469-78.

Al-Nimry SS, Khanfar MS. Preparation and characterization of lovastatin polymeric microparticles by coacervation-phase separation method for dissolution enhancement. J Appl Polym Sci 2016;133:43277-87.

Shamsuddin, Fazil M, Ansari SH, Ali J. Atorvastatin solid dispersion for bioavailability enhancement. J Adv Pharm Technol Res 2016;7:22-6.

Palanisamya M, James A, Khanam J. Atorvastatin–cyclodextrin systems: Physiochemical and biopharmaceutical evaluation. J Drug Delivery Sci Technol 2016;31:41-52.

Yadava SK, Naik JB, Patil JS, Mokale VJ, Singh R. Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system. Colloids Surf A 2015;481:63-71.

Published

01-05-2016

How to Cite

Mmr, M. M. A., M. Tripathy, and A. Majeed. “THE PROSPECT, PROMISES AND HINDRANCES OF STATIN BASE MOLECULES: LOOK BACK TO LOOK FORWARD”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 5, May 2016, pp. 22-33, https://innovareacademics.in/journals/index.php/ijpps/article/view/11300.

Issue

Section

Review Article(s)