DNA TARGETED ANTHRAQUINONE DERIVATIVES: AN IMPORTANT ANTICANCER AGENTS

  • Anupriya Adhikari Department of Chemistry, Kanya Gurukul Campus, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India
  • Andkamalesh S. Mahar

Abstract

Deoxyribonucleic acid, DNA is the source of various genetic information and is currently one of the most important and studied biological receptor. Lately, a wide range of chemotherapeutic agents are known wherein they affect cell division or DNA synthesis, leading to inhibition of cell growth and cell death. Out of various agents anthraquinone, having a planar tricyclic structure is the backbone of many known antitumor drugs like doxorubicin and mitoxantrone capable of targeting at the molecular/DNA level. This review embraces discussion on DNA-binding molecules with special attention to anthraquinone based compounds having application in anticancer activity by DNA damage mechanism. The review also compiles the work reported on anthraquinone based molecule in molecular imaging.

Keywords: Anthraquinone, DNA, Cancer, Molecular imaging

Keywords: Anthraquinone, DNA, Cancer, Molecular imaging

Downloads

Download data is not yet available.

References

1. Hannon MJ. Supra molecular DNA recognition. Chem Soc Rev 2007;36:280-95.
2. MacMillan AM. Chemistry of nucleic acids-part 3-preface. Pure Appl Chem 2004;76:14.
3. MacMillan AM. Fifty years of "Watson-Crick". Pure Appl Chem 2004;76:1521-4.
4. Jelly R, Lewis SW, Lennard C, Lim KF, Almog J. Lawsone: a novel reagent for the detection of latent fingermarks on paper surfaces. Chem Commun 2008;30:3513-5.
5. Kranaster R, Marx A. Increased single-nucleotide discrimination in allele-specific polymerase chain reactions through primer probes bearing nucleobase and 2'-deoxyribose modifications. Chem Eur J 2007;13:6115-22.
6. Marras SAE, Tyagi S, Kramer FR. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clin Chim Acta 2006;363:48-60.
7. Werder S, Malinovskii VL, Haner R. Triazolylpyrenes: synthesis, fluorescence properties and incorporation into DNA. Org Lett 2008;10:2011-4.
8. Gottesfeld JM, Neely L, Trauger JW, Baird EE, Dervan PB. Regulation of gene expression by small molecules. Nature 1997;387:202-5.
9. Dickerson RE, Drew HR, Conner BN, Wing M, Fratini AV, Kopka, ML. The anatomy of A-, B-, and Z-DNA. Science 1982;216:475-85.
10. Saenger W. Principles of nucleic acid structure, Biochemical Education, Springer-Verlag, New York; 1984.
11. Bauer GB, Povirk LF. Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a G–G–C sequence. Nucleic Acids Res 1997;25:1211-8.
12. Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002;2:188-200.
13. Reedijk J. New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci USA 2003;100:3611-6.
14. Panousis C, Phillips DR. DNA sequence specificity of mitoxantrone. Nucleic Acids Res 1994;22:1342-5.
15. Denny WA, Wakelin LPG. Kinetics of the binding of mitoxantrone, ametantrone and analogues to DNA: relationship with binding mode and anti-tumour activity. Anti-Cancer Drug Des 1990;5:189-200.
16. Tanious FA, Jekins TC, Neidle S, Wilson WD. Substituent position dictates the intercalative DNA-binding mode for anthracene-9,10-dione antitumor drugs. Biochemistry 1992;31:11632-40.
17. Denny WA. DNA-intercalating ligands as anti-cancer drugs: prospects for future design. Anti-Cancer Drug Design 1989;4:241-63.
18. Clement B, Jung F. N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P-4502C3 or human liver microsomes, microsomal retroreduction, and further oxidative transformation of the formed amidoximes. Possible relationship to the biological oxidation of arginine to NG-hydroxy arginine, citrulline, and nitric oxide. Drug Metab Dispos 1994;22:486-97.
19. Remers WA. The chemistry of antitumor antibiotics. Wiley, New York; 1979. p. 1.
20. Williams LD, Egli M, Gao Q. Structure of nogalomycin bound to a DNA hexamer. Proc Natl Acad Sci USA 1990;87:2225-9.
21. Neidle S. DNA minor-groove recognition by small molecules. Natural Product Reports 2001;18:291-309.
22. Skibo EB, Xing C, Groy T. Recognition and cleavage at the DNA major groove. Bioorg Med Chem 2001;9:2445-59.
23. Schleif R. DNA binding by proteins. Science 1988;241:1182-7.
24. Jain AK, Bhattacharya S. Groove binding ligands for the interaction with parallel-stranded ps-duplex DNA and triplex DNA. Bioconjugate Chem 2010;21:1389-403.
25. Ganesh KN, Kumar VA. Conformationally constrained PNA analogs: structural evolution towards DNA/RNA binding selectivity. Acc Chem Res 2005;38:404-12.
26. Nielsen PE. Peptide nucleic acids as therapeutic agents. Curr Opin Struct Biol 1999;9:353-7.
27. Bailly C, Chaires JB. Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogs. Bioconjugate Chem 1998;9:513-38.
28. Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem 2001;9:2215-35.
29. Lown JW, Graham BJ. DNA sequence recognition altered bis-benzimidazole minor groove binders. In: Advances in DNA Sequence-Specific Agents. ed. Graham BJ. JAI Press: Greenwich; 1997. p. 67-95.
30. Dervan PB. The design of sequence-specific DNA-binding molecules. Science 1986;232:464-71.
31. Bhattacharya S, Thomas M. Facile synthesis of oligopeptides distamycin analogs devoid of hydrogen-bond donors or acceptors at the N-terminus: sequence-specific duplex DNA binding as a function of peptide chain length. Tetrahedron Lett 2000;41:5571-5.
32. Eriksson S, Kim SK, Kubista M, Norden B. Binding of 4′6-diamino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 1993;32:2987-98.
33. Brown DG, Sanderson MR, Skelly JV, Jenkins TC, Brown T, Garman E, et al. Crystal structure of a berenil–dodeca- nucleotide complex: the role of water in sequence-specific ligand binding. EMBO J 1990;9:1329-34.
34. Ferguson LR, Denny WA. Microbial mutagenic effects of the DNA minor groove binder pibenzimol (Hoechst 33258) and a series of mustard analogs. Mutat Res 1995;329:19-27.
35. Bhattacharya S, Chaudhuri P. Medical implications of benzimidazole derivatives as drugs designed for targeting DNA and DNA-associated processes. Curr Med Chem 2008;15:1762-77.
36. Holmquist G. Hoechst 33258 fluorescent staining of Drosophila chromosomes. Chromosoma 1975;49:333-56.
37. Bourdouxhe C, Colson P, Houssier C, Henichart JP, Waring MJ, Denny WA, et al. Design of composite drug molecules: mutual effects on binding to DNA of an intercalator, amsacrine, and a minor groove binder, netropsin. Anticancer Drug Des 1995; 10:131-54.
38. David-Cordonnier MH, Hildebrand MP, Baldeyrou B, Lansiaux A, Keuser C, Benzschawel K, et al. Design, synthesis and biological evaluation of new oligopyrrole carboxamides linked with tricyclic DNA-intercalators as potential DNA ligands or topoisomerase inhibitors. Eur J Med Chem 2007;42:752-71.
39. Llombart M, Poveda A, Forner E, Martos CF, Gaspar C, Muñoz M, et al. Phase I study of mitonafide in solid tumors. Invest New Drugs 1992;10:177-81.
40. Rosell R, Carles J, Abad A, Ribelles N, Barnadas A, Benavides A, et al. Phase I study of mitonafide in 120-hour continuous infusion in non-small cell lung cancer. Invest New Drugs 1992;10:171-5.
41. Arlin ZA. A special role for amsacrine in the treatment of acute leukemia. Cancer Invest 1989;7:607-9.
42. Jackson TC, Verrier JD, Kochanek PM. Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis 2013;4:1-24.
43. Lown JW. Anthracycline and anthracene dione-based anticancer agents. In: Bioactive Reviews; Elsevier: Amsterdam, Netherlands; 1988;6:1-753.
44. Lown JW, Morgan AR, Yen SF, Wang YH, Wilson WD. Characteristics of the binding of the anticancer agents mitoxantrone and ametantrone and related structures to deoxyribonucleic acids. Biochemistry 1986;24:4028-35.
45. Danhier F, Breton AL, Preat V. RGD-based strategies to target al. pha (v) Beta-integrin in cancer therapy and diagnosis. Mol Pharm 2012;9:2961-73.
46. Kohn KW. DNA as a target for anticancer drug action. In: Anticancer Drugs. Tapiero, Robert J, Lampidis TJ. Eds. Colloque Inserm/John Libbey Eurotext Ltd.; 1989. p. 77-86.
47. Kizek R, Adam V, Hrabeta J, Eckschlager T, Smutny S, Burda JV, et al. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: recent advances. Pharmacol Ther 2012;133:26-39.
48. Routier S, Bernier JL, Catteau JP, Riou JF, Bailly C. Synthesis, DNA binding, topoisomerase II inhibition and cytotoxicity of two guanidine-containing anthracene-9,10-diones. Anticancer Drug Des 1998;13:407-15.
49. Huang HS, Chiou JF, Fong Y, Hou CC, Lu YC, Wang JY, et al. Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. J Med Chem 2003;46:3300-7.
50. Perry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA, et al. 2,7-Disubstituted amido fluorenone derivatives as inhibitors of human telomerase. J Med Chem 1999;42:2679-84.
51. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185-229.
52. Johnson RK, Zee-Cheng RKY, Le WW, Acton EM, Henry DW, Cheng CC. The experimental antitumor activity of amino-anthraquinones. Cancer Treat Rep 1979;63:425-39.
53. Skladanowski A, Konopa J. Mitoxantrone and ametantrone induce interstrand cross-links in DNA of tumor cells. Br J Cancer 2000;82:1300-4.
54. Zee-Cheng RKY, Cheng CC. Structure-activity relationship study of anthraquinones: 1,4-dihydroxy-5, & bis((2-(2-hydroxyethoxy) ethyl)amino)-9,10-anthracenedione, an analog of an established antineoplastic agent. J Pharm Sci 1982; 71:708-9.
55. Zee-Cheng RKY, Cheng CC. Antineoplastic agents. Structure-activity relationship study of bis (substituted amino alkylamino)-anthraquinones. J Med Chem 1978;21:291-4.
56. Zee-Cheng RKY, Podrebarac EG, Menon CS, Cheng CC. Structural modification study of bis (substituted amino-alkylamino) anthraquinones. An evaluation of the relationship of the (2-(2-hydroxyethyl)amino)ethyl)amino side chain with antineoplastic activity. J Med Chem 1979;22:501-5.
57. Huang HS, Chiu HF, Lee AR, Guo CL, Yuan CL. Synthesis and structure-activity correlations of the cytotoxic bifunctional 1,4-diamidoanthraquinone derivatives. Bioorg Med Chem 2004;12:6163-70.
58. Murdock KC, Child RG, Fabio PF, Angier RB, Wallace RE, Durr FE, et al. Antitumor agents. 1,4-bis-((aminoalkyl)amino)-9,10-anthracenediones. J Med Chem 1979;22:1024-30.
59. Johnson MG, Kiyokawa H, Tani S, Koyama J, Morris-Natschke SL, Mauger A, et al. Antitumor agents CLXVII. Synthesis and structure-activity correlations of the cytotoxic anthraquinone 1,4-Bis-(2,3-Epoxypropylamino)-9,10-anthracenedione and of related compounds. Bioorg Med Chem 1997;5:1469-79.
60. Gatto B, Zagotto G, Sissi C, Cera C, Uriarte E, Palu G, et al. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling, and biological activity. J Med Chem 1996;39:3114-22.
61. Huang HS, Huang KF, Li CL, Huang YY, Chiang YH, Huang FC, et al. Synthesis, human telomerase inhibition and antiproliferative studies of a series of 2,7-bis-substituted amido-anthraquinone derivatives. Bioorg Med Chem 2008;16:6976-86.
62. Hua DH, Lou K, Battina SK, Zhao H, Perchellet EM, Wang Y, et al. Syntheses, molecular targets and antitumor activities of novel triptycene bisquinones and 1,4-anthracenedione analogs. Curr Med Chem 2006;6:303-18.
63. Kamal A, Ramu R, Tekumalla V, Khanna GB, Barkume MS, Juvekar AS, et al. Synthesis, DNA binding, and cytotoxicity studies of pyrrolo[2,1-c][1,4]benzodiazepine-anthraquinone conjugates. Bioorg Med Chem 2007;15:6868-75.
64. Routier S, Cotelle N, Catteau JP, Bernier JL, Waring MJ, Riou JF, et al. Salen-anthraquinone conjugates. Synthesis, DNA-binding and cleaving properties, effects on topoisomerases and cytotoxicity. Bioorg Med Chem 1996;4:1185-96.
65. Hsin LW, Wang HP, Kao PH, Lee O, Chen WR, Chen HW, et al. Synthesis, DNA binding, and cytotoxicity of 1,4-bis(2-amino-ethylamino)anthraquinone–amino acid conjugates. Bioorg Med Chem 2008;16:1006-14.
66. Teng CH, Won SJ, Lin CN. Design, synthesis and cytotoxic effect of hydroxy and 3-alkylaminopropoxy-9,10-anthraquinone derivatives. Bioorg Med Chem 2005;13:3439-45.
67. Wu M, Wan B, Perchellet EM, Sperfslage BJ, Stephany HA, Hua DH, et al. Synthetic 1,4-anthracenediones, which block nucleoside transport and induce DNA fragmentation, retain their cytotoxic efficacy in daunorubicin-resistant HL-60 cell lines. Anti-Cancer Drugs 2001;12:807-19.
68. Cheng CC, Zee-Cheng RKY. The design, synthesis and development of a new class of potent antineoplastic anthraquinones. Prog Med Chem 1983;20:83-118.
69. Zagotto G, Sissi C, Moro S, Dal Ben D, Parkinson GN, Fox KR, et al. Amide bond direction modulates G-quadruplex recognition and telomerase inhibition by 2,6 and 2,7 bis-substituted anthracene dione derivatives. Bioorg Med Chem 2008;16:354-61.
70. Cairns D, Michalitsi E, Jenkins TC, Mackay SP. Molecular modeling and cytotoxicity of substituted anthraquinones as inhibitors of human telomerase. Bioorg Med Chem 2002;10:803-7.
71. Wang Y, Perchellet EM, Ward MM, Lou K, Hua DH, Perchellet JP. The rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria treated with anti-tumor 1,4-anthracenediones. Anti-Cancer Drugs 2005;16:953-67.
72. Perchellet EM, Wang Y, Weber RL, Sperfslage BJ, Lou K, Crossland J, et al. Synthetic 1,4-anthracenedione analogs induce cytochrome c release, caspase-9,-3, and-8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling. Biochem Pharmacol 2004;67:523-37.
73. Zhao P, Xu LC, Huang JW, Fu B, Yu HC, Ji LN. Cationic porphyrin–anthraquinone dyads: modes of interaction with G-quadruplex DNA. Dyes Pigments 2009;83:81-7.
74. Hurley LH, Wheelhouse RT, Sun D, Kerwin SM, Salazar M, Fedoroff OY, et al. G-quadruplexes as targets for drug design. Pharmacol Ther 2000;85:141-58.
75. Liang Z, Ai J, Ding X, Peng X, Zhang D, Zhang R, et al. Anthraquinone derivatives as potent inhibitors of c-met kinase and the extracellular signaling pathway. ACS Med Chem Lett 2013;4:408-13.
76. Gibson D, Binyamin I, Haj M, Ringel I, Ramu A, Katzhendler J. Anthraquinone intercalators as carrier molecules for second-generation platinum anticancer drugs. Eur J Med Chem 1997;32:823-31.
77. Jin GZ, You YJ, Kim Y, Nam NH, Ahn BZ. Esters of chlorambucil with 2-substituted 1,4-dihydroxy-9,10-anthraquinones as multi-functional anticancer agents. Eur J Med Chem 2001;36:361-6.
78. Wang S, Wang Q, Wang Y, Liu L, Weng X, Li G, et al. Novel anthraquinone derivatives: synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species (ROS)-dependent mitochondrial pathway. Bioorg Med Chem Lett 2008;18:6505-8.
79. Tu H, Huang A, Teng C, Hourb T, Yang S, Pu, Y, et al. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells. Bioorg Med Chem 2011;19:5670-8.
80. Gatto B, Zagotto G, Sissi C, Palumbo M. Preferred interaction of D-peptidyl-anthraquinones with double-stranded B-DNA. Int J Biol Macromol 1997;21:319-26.
81. Zagotto G, Sissi C, Gatto B, Palumbo M. Aminoacyl-analogues of mitoxantrone as novel DNA-damaging cytotoxic agents. Arkivoc 2004;5:204-18.
82. Zagotto G, Supino R, Favini E, Moro S, Palumbo M. New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents. Il Farmaco 2000;55:1-5.
83. Koh E, Ueda Y, Nakamura T, Kobayashi A, Katsuta S, Takahashi H. Apoptosis in young rats with adriamycin-induced cardiomyopathy-comparison with pirarubicin, a new anthracycline derivative. Pediatr Res 2002;51:256-9.
84. Niitsu N, Yamazaki J, Nakayama M, Umeda M. Pirarubicin-induced myocardial damage in elderly patients with non-Hodgkin's lymphoma. Nippon Ronen Igakkai Zasshi 1998;35:358-62.
85. Wojnar J, Mandecki M, Wnuk-Wojnar AM, Holowiecki J. Clinical studies on actinomycin A cardiotoxicity in adult patients with acute nonlymphoblastic leukemia. Folia Haematol 1989;116:297-303.
86. Rabbani A, Finn RM, Ausio J. The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays 2005;27:50-6.
87. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57:727-41.
88. Kiyomiya K, Matsuo S, Kurebe M. Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of the adriamycin-proteasome complex. Cancer Res 2001;61:2467-71.
89. Ellis LT, Perkins DF, Turner P, Hambley TW. The preparation and characterisation of cyclam/anthraquinone macrocyle/ intercalator complexes and their interactions with DNA. Dalton Trans 2003;13:2728-36.
90. Venkata Ramana A, Watkinson M, Todd MH. Synthesis and DNA binding ability of cyclam–amino acid conjugates. Bioorg Med Chem Lett 2008;18:3007-10.
91. Kimura E, Kikuta E. Why zinc in zinc enzymes? From biological roles to DNA base-selective recognition. J Biol Inorg Chem 2000;5:139-55.
92. Gibson D, Mansur N, Gean KF. Preparation, characterization, and antitumor properties of cis-PtCl2 complexes linked to anthraquinones through position number 2. J Inorg Biochem 1995;58:79-88.
93. Whittaker J, McFadyen WD, Wickham G, Wakelin LP, Murray V. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA. Nucleic Acids Res 1998;26:3933-9.
94. Perrin LC, Prenzler PD, Cullinane C, Phillips DR, Denny WA, McFadyen WD. DNA targeted platinum complexes: synthesis, cytotoxicity and DNA interactions of cis-dichloro platinum (II) complexes tethered to phenazine-1-carboxamides. J Inorg Biochem 2000;81:111-7.
95. Shionoya M, Ikeda T, Kimura E, Shiro M. Novel "multipoint" molecular recognition of nucleobases by a new zinc (II) complex of acridine-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane). J Am Chem Soc 1994;116:3848-59.
96. Kimura E, Kikuchi M, Kitamura H, Koike T. Selective and efficient recognition of thymidylylthymidine (TpT) by bis(ZnII-cyclen) and thymidylylthymidylylthymidine (TpTpT) by tris(ZnII-cyclen) at neutral pH in aqueous solution. Chem Eur J 1999;5:3113-23.
97. Jones JE, Pope SJ. Sensitized near-IR lanthanide luminescence is exploiting anthraquinone-derived chromophores: syntheses and spectroscopic properties. Dalton Trans 2009;39:8421-5.
98. Jones JE, Amoroso AJ, Dorin IM, Parigi G, Ward BD, Buurma NJ, et al. Bimodal, dimetallic lanthanide complexes that bind to DNA: The nature of binding and its influence on water relaxivity. Chem Commun 2011;47:3374-76.
99. Jones JE, Kariuki BM, Ward BD, Pope SJ. Amino-anthraquinone chromophores functionalised with 3-picolyl units: structures, luminescence, DFT and their coordination chemistry with cationic Re(I) di-imine complexes. Dalton Trans 2011;40:3498-509.
100. Balasingham RG, Williams CF, Mottram HJ, Coogan MP, Pope SJA. Gold (I) complexes derived from alkynyl oxy-substituted anthraquinones: Syntheses, luminescence, preliminary cytotoxicity, and cell imaging studies. Organometallics 2012;31:5835-43.
101. Adhikari A, Datta A, Chuttani K, Rawat H, Shukla A, Mishra AK. Preliminary evaluation of an anthraquinone conjugated DOTA derivative as SPECT agent. Int J Pharm Pharm Sci 2015;7:85-9.
102. Adhikari A, Datta A, Adhikari M, Chauhan K, Chuttani K, Saw S, et al. Preclinical evaluation of DO3A-Act-AQ: A poly aza macro-cyclic monomeric anthraquinone derivative as a theranostic agent. Mol Pharm 2014;11:445-56.
Statistics
544 Views | 5970 Downloads
How to Cite
Adhikari, A., and A. S. Mahar. “DNA TARGETED ANTHRAQUINONE DERIVATIVES: AN IMPORTANT ANTICANCER AGENTS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 8, no. 6, Apr. 2016, pp. 17-25, https://innovareacademics.in/journals/index.php/ijpps/article/view/11328.
Section
Review Article(s)