GREEN SYNTHESIS, CHARACTERIZATION OF SILVER NANOPARTICLES OF A MARINE RED ALGA SPYRIDIA FUSIFORMIS AND THEIR ANTIBACTERIAL ACTIVITY

  • Subbiah Murugesan Division of Algal Biotechnology and Bionano Technology, PG and Research Department of Botany, Pachaiyappa’s College, Chennai 600030, India
  • Sundaresan Bhuvaneswari Division of Algal Biotechnology and Bionano Technology, PG and Research Department of Botany, Pachaiyappa’s College, Chennai 600030, India
  • Vajiravelu Sivamurugan 2PG and Research Department of Chemistry, Pachaiyappa’s College, Chennai 600030, India

Abstract

Objective: In the present system, the green synthesis of silver nanoparticles using marine the red alga Spyridia fusiformis and antibacterial activity was carried out.

Methods: The seaweed extract was used for the synthesis of AgNPs at room temperature. The silver nanoparticles were characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray diffraction (XRD) techniques. The antibacterial activity of biosynthesized silver nanoparticles was carried out by disc diffusion method against pathogenic bacteria.

Results: The UV-visible spectroscopy revealed surface plasmon resonance at 450 nm. The FT-IR measurements showed the possible functional groups responsible for the formation of nanoparticles. The X-ray diffraction analysis showed that the particles were crystalline in nature. TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5–50 nm. The silver nanoparticles synthesized from the S. fusiformis showed higher activity and proved their efficacy in controlling the pathogenic bacterial strains. The nanoparticles showed highest inhibition activity on K. pneumaniae and S. aureus up to 26 and 24±0.01 mm at 100 μg/ml of nanoparticles.

Conclusion: The synthesised AgNPs have shown the best antibacterial activity against human pathogens E. coli, K. pneumoniae, S. aureus and P. aeruginosa. The above eco-friendly AgNPs synthesis procedure could be a viable solution for industrial applications in the future and therapeutic needs.

Keywords: Antibacterial activity, Green synthesis, Marine algae, Silver nanoparticles, Spyridia fusiformis

Downloads

Download data is not yet available.

References

1. Rajasulochana P, Dhamotharan R, Murugakoothan P, Murugesan S, Krishnamoorthy P. Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycusalvarezii. Int J Nanoscience 2010;9:511-5.
2. Swaminathan S, Murugesan S, Damodarkumar S, Dhamotharan R, Bhuvaneswari S. Synthesis and characterization of gold nanoparticles from alga Acanthophoraspecifera (VAHL) boergesen. Int J Nanosci Nanotech 2011;2:85-94.
3. Bhuvaneswari S, Murugesan S, Sridharan MC, Dhamotharan R, Murugakoothan P. Turbinariaconoides: a novel biological agent for the extracellular synthesis of gold nanoparticles. Proceedings of International Conference on Implications of Biotechnology on Biodiversity and its Conservation January 27 and 28, 2011. Suppl Adv Biotech 2011;10:107-10.
4. Murugesan S, Elumalai M, Dhamotharan R. Green synthesis of silver nanoparticles from marine alga Gracilariaedulis S. G (Gmelin) P. C. Silva. Biosci Biotech Res Comm 2011;4:105-10.
5. Radhika D, Veerabahu C, Sakthibama G, Murugesan S. Green synthesis of gold nanoparticles by the marine alga Stoechospermummarginatum. Int J Nanosci Nanotech 2012;6:61-70.
6. Dhamotharan R, Sridevi H, Murugesan S, Murugakootan P. Biosynthesis and characterization of gold nanoparticles from marine alga Sargassumswartzii C. Agarth. Int J Appl Sci Nanotech 2012;1:21-8.
7. Dhamotharan R, Punitha D, Murugesan S, Subha TS. Brown algal biomass mediated biosynthesis of gold nanoparticles. Int J Nanosci Nanotech 2010;1:37-44.
8. Thennarasan S, Murugesan S. Biosynthesis of silver nanoparticles using marine brown alga Lobophora variegate and assessment of its bactericidal activity. Int J Nanosci Nanotech 2014;5:39-47.
9. Vishnu Kiran M, Murugesan S. Biosynthesis of silver nanoparticles from marine alga Halymeniaporyphyroidesand its antibacterial efficacy. Int J Curr Microbiol App Sci 2014;3:96-103.
10. Murugesan S, Bhuvaneswari S, Shanthi N, Murugakoothan P, Sivamurugan V. Red alga Hypneamusciformis (Wulf) lamour mediated environmentally benign synthesis and antifungal activity of gold nanoparticles. Int J Nanosci Nanotech 2015;6:71-83.
11. Vinothkumar R, Murugesan S, Bhuvaneswari S. Extracellular synthesis of silver nanoparticles by a marine red alga Champiaparvula and their antibacterial activity. Therapeutics of marine bioactive compounds. Thahira Banu, A and Somishon Keishing. Educationalist Press: New Delhi; 2015. p. 218.
12. Maynard AD, Michelson E. The nanotechnology consumer product inventory; 2006. Available from: http://www.nanotechproject. org/44S. [Last accessed on 10 Dec 2015]
13. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plants, Sesuviumportulacastrum, L. Colloids Surf B Interface 2010;79:488–93.
14. Mulvancy P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996;12:788-800.
15. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanumtorvum and their promising antimicrobial activity. J Biopesticides 2010;3:394-9.
16. Henglein A. Physicochemical properties of small metal particles in solution: ‘‘microelectrode’’ reactions, chemisorptions, composite metal particles, and the atom-to-metal transition. J Phys Chem 1993;97:5457–71.
17. Kumar P, Senthamil Selvi S, Lakshmi Praba A, Prem Kumar K, Ganeshkumar RS, Govindaraju M. Synthesis of silver nanoparticles from Sargassumtenerrimum and screening phytochemicals or its anti-bacterial activity. Nano Biomed Eng 2012;4:12–6.
18. Kamat PV, Flumiani M, Hartland GV. Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 1998;102:3123–8.
19. Mie G. Beiträgezur optiktrüber medien, speziellkolloidaler metallösungen. Ann Physik 1908;25:377.
20. Smitha SL, Philip D, Gopchandran KG. Green synthesis of gold nanoparticles using Cinnamomumzeylanicum leaf broth. Spectrochim Acta Part A 2009;74:735–9.
21. Harekrishna B, Dipak KB, Gobinda PS, Priyanka S, Santanu P, Ajay M. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A 2009;348:212-6.
22. Ghodake G, Lee DS. The biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoe 2011;6:1–4.
23. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 2003;19:1627–31.
24. Huang J, Liu Y, Wang X. Selective adsorption of tannin from flavonoids by organically attapulgite clay. J Hazardous Mater 2008;160:382-7.
25. Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 2009;73:374–81.
26. Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A 2009;73:650–3.
27. Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectros 2007;43:13–6.
28. O’Coinceanain MO, Astill C, Schumm S. Potentiometric FTIR and NMR studies of the complexation of metals with theaflavin. Dalton Trans 2003;5:801-7.
29. Shetty G, Kedall C, Shepherd N, Stone N, Barr H. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of the oesophagus. Br J Cancer 2006;94:1460-4.
30. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M. Pepsom gold colloid conjugates preparation, characterization and enzymatic activity. Langmuir 2001; 17:1674-9.
31. Sathyavathi R, Krishna MB, Rao SV, Rao DN. Biosynthesis of silver nanoparticles using Coriandrumsativum leaf extract and their application in non-linear optics. Adv Sci Lett 2010;3:138-43.
32. Rashmi S, Preeti V, Sadhna P. Enzymatic formation of gold nanoparticles using Phanerochaetechrysosprium. Adv Chem Eng Sci 2011;1:154-62.
33. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R. Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxysporum. Colloids Surf B 2003;28:313-8.
34. Murugesan S, Elumalai M, Dhamotharan R. Green synthesis of silver nanoparticles from marine alga Gracilaria edulis S. G (Gmelin) P.C. Silva. Biosci Biotech Res Comm 2011;4:105-10.
35. Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 2000;1:18.
36. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 1997;275:1102.
37. Noruzi M, Zare D, Khoshnevisan K, Davoodi D. Rapid green synthesis of gold nanoparticles using Rosa hybrid petal extract at room temperature. Spectrochimica Acta Part A 2011;79:1461–5.
38. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A. Biosynthesis of stable poly shaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidiumguajava) leaf extract. Nano Biotechnol 2009;5:34–41.
39. Pal S, Tak YK, Song JM. Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007;73:1712-20.
40. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86.
41. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller J. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun (Camb) 2002;24:3018-9.
42. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TM, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662-8.
43. Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial effects of silver electrodes with the weak direct current. Antimicrob Agents Chemother 1974;6:637–42.
44. Karthick R, Namasivayam S, Abimanyu. Silver nanoparticle synthesis from Lecanicilliumlecanii and evolutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Pharm Sci 2011;3:190-5.
Statistics
356 Views | 2152 Downloads
How to Cite
Murugesan, S., S. Bhuvaneswari, and V. Sivamurugan. “GREEN SYNTHESIS, CHARACTERIZATION OF SILVER NANOPARTICLES OF A MARINE RED ALGA SPYRIDIA FUSIFORMIS AND THEIR ANTIBACTERIAL ACTIVITY”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 9, no. 5, May 2017, pp. 192-7, doi:10.22159/ijpps.2017v9i5.17105.
Section
Original Article(s)