Manikandan Mohan, Krishnan Sundar


Objective: To predict the immunogenic epitopes from human papillomavirus (HPV) virus using matrix based computational tools.

Methods: In the present study, three matrix based algorithms, SYFPETHI, BIMAS and RANKPEP were used to predict the cytotoxic T lymphocyte (CTL) epitopes of HPV 16 and 18. The ability of the peptides to bind HLA A_0201, a most common allele, was evaluated using these algorithms. High scoring peptides were considered as potential binders.

Results: Evaluation of HPV 16 proteome resulted in the prediction of 249 peptides as potential binders. Out of these only 25 peptides were predicted as binders by all three algorithms. Analysis of HPV 18 predicted 215 peptides, as potential binders. Among the 215 peptides only 20 peptides were predicted as binders by all three algorithms.

Conclusion: The efficacy of these peptides in inducing a stronger immune response needs to be tested using in vitro and in vivo assays. The identified epitopes could be used in designing a novel epitope vaccine for HPV.


Epitope prediction, CTL epitopes, Human papilloma virus, BIMAS, SYFPEITHI, RANKPEP

| PDF | HTML |


Garland SM, Smith JS. Human papilloma virus vaccines. Drugs 2010;70:1079-98.

Gatto M, Agmon-Levin N, Soriano A, Manna R, Maoz-Segal R, Kivity S, et al. Human papilloma virus vaccine and systemic lupus erythematosus. Clin Rheumatol 2013;32:1301-7.

Soliman PT, Slomovitz BM, Wolf JK. Mechanism of cervical cancer. Drug Discovery Today: Dis Mech 2004;1:253-8.

Schiffman M, Castle PE. Human papilloma virus: epidemiology and public health. Arch Pathol Lab Med 2003;127:930-4.

Agarwal SM, Raghav D, Singh H, Raghava GPS. CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 2011;39:975-9.

Glahder JA, Hansen CN, Vinther J, Madsen BS, Norrild B. A promoter within the E6 ORF of human papilloma virus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA. J Gen Virol 2003;84:3429-41.

Vu LT, Bui D, Le HT. Prevalence of cervical infection with HPV type 16 and 18 in Vietnam: implications for vaccine campaign. BMC Cancer 2013;13:1-7.

Nirmala S, Sudandiradoss C. Prediction of promiscuous epitopes in the E6 protein of three high risk human papilloma viruses: a computational approach. Asian Pac J Can Prev 2013;14:4167-75.

Yao Y, Huang W, Yang X, Sun W, Liu X, Cun W, et al. HPV-16 E6 and E7 protein T cell epitopes prediction analysis based on distributions of HLA-A loci across populations: an in silico approach. Vaccine 2013;31:2289-94.

Suzich JA, Ghim SJ, Palmer-Hill FJ, White WI, Tamura JK, Bell JA, et al. Systemic immunization with papilloma virus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci 1995;92:11553-7.

Van der Burg SH, de Jong A, Welters MJ, Offringa R, Melief CJ. The status of HPV16-specific T-cell reactivity in health and disease as a guide to HPV vaccine development. Virus Res 2002;89:275-84.

Sette A, Newman M, Livingston B, McKinney D, Sidney J, Ishioka G, et al. Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. HLA 2002;59:443-51.

Irini AD, Guan P, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 2006;7:131.

Hudson AW, Ploegh HL. The cell biology of antigen presentation. Exp Cell Res 2002;272:1-7.

Srinivasan KN, Zhang GL, Khan AM, August JT, Brusic V. Prediction of class I T-cell epitopes: evidence of presence of immunological hot spots inside antigens. Bioinformatics 2004;20:297-302.

Van Kaer L. Major history compatibility complex class restricted antigen processing and presentation. Tissue Antigens 2002;60:1-9.

Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, et al. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005;35:2295-303.

Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 1999;17:51-88.

Riedl P, Reimann J, Schirmbeck R. Complexes of DNA vaccines with cationic, antigenic peptides are potent, polyvalent CD8 (+) T-cell-stimulating immunogens. Meth Mol Med 2006;127:159-69.

Brusic V, Bajic VB, Petrovsky N. Computational methods for prediction of T-cell epitopes-a framework for modelling, testing, and applications. Methods 2004;34:436-43.

De Groot AS, Moise L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr Opin Drug Discovery Dev 2007;10:332-40.

Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999;50:213-9.

Yu K, Petrovsky N, Schonbach C, Koh JL, Brusic V. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med 2002;8:137-48.

Brusic V, Rudy G, Honeyman MC, Hammer J, Harrison LC. Prediction of MHC class-II binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998;14:121-30.

Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins Struct Funct Genet 1998;33:460-74.

Lim JS, Kim S, Lee HG. Selection of peptides that bind to the HLA A2.1 molecule by molecular modeling. Mol Immunol 1996;33:221-30.

Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V. Predicting binding affinities of protein ligands from three dimensional models: application to peptide binding to class I major histocompatibility proteins. J Med Chem 1999;42:4650-8.

Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA A2 binding peptides based on independent binding of individual peptide side chains. J Immunol 1994;152:163-75.

Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 2002;63:701-8.

Donnes P, Elofsson A. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 2002;3:25-30.

Guan P, Doytchinova IA, Zygouri C, Flower DR. MHC pred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 2003;31:3621-4.

Antonets DV, Maksyutov AZ. TEpredict: software for T cell epitope prediction. Mol Biol 2010;44:130-9.

Cohen T, Moise L, Martin W, De Groot AS. Immunoinformatics: the next step in vaccine design. In Infectious Disease Informatics, Springer New York; 2010. p. 223-44.

Eklund C, Afgeijersstam V, Yuan F, Stuber G, Dillner J. Identification of a cytotoxic T-lymphocyte epitope in the human papillomavirus type 16 E2 protein. J Gen Virol 1997;78:2615-20.

Liu DW, Yang YC, Lin HF, Lin MF, Cheng YW, Chu CC, et al. Cytotoxic T-lymphocyte responses to human papilloma virus type 16 E5 and E7 proteins and HLA-A* 0201-restricted T-cell peptides in cervical cancer patients. J Virol 2007;81:2869-79.

Zehbe I, Kaufmann AM, Schmidt M, Hohn H, Maeurer MJ. Human papilloma virus 16 E6-specific CD45RA+CCR7+high avidity CD8+T cells fail to control tumor growth despite interferon-[gamma] production in patients with cervical cancer. J Immunother 2007;30:523-32.

Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol 2011;270:62-9.

Riemer AB, Keskin DB, Zhang G, Handley M, Anderson KS, Brusic V, et al. A conserved E7-derived cytotoxic T lymphocyte epitope expressed on human papilloma virus 16-transformed HLA-A2+epithelial cancers. J Biol Chem 2010;285:29608-22.

Hu J, Peng X, Schell TD, Budgeon LR, Cladel NM, Christensen ND. An HLA-A2. 1-transgenic rabbit model to study immunity to papilloma virus infection. J Immunol 2006;177:8037-45.

Daftarian PM, Mansour M, Pohajdak B, Fuentes-Ortega A, Korets-Smith E, MacDonald L, et al. Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax® encapsulated CTL/T helper peptides. J Trans Med 2007;5:26.

Yoon H, Chung MK, Min SS, Lee HG, Yoo WD, Chung KT, et al. Synthetic peptides of human papilloma virus type 18 E6 harboring HLA-A2. 1 motif can induce peptide-specific cytotoxic T-cells from peripheral blood mononuclear cells of healthy donors. Virus Res 1998;54:23-9.

Rudolf MP, Man S, Melief CJ, Sette A, Kast WM. Human T-cell responses to HLA-A-restricted high binding affinity peptides of human papillomavirus type 18 proteins E6 and E7. Clin Can Res 2001;7:788-95.

Huang L, Dai Y. Direct prediction of T-cell epitopes using support vector machines with novel sequence encoding schemes. J Bioinf Comput Biol 2006;4:93-107.

Liu Z, Lv H, Han J, Liu R. A computational model for predicting transmembrane regions of retroviruses. J Bioinf Comput Biol 2017;15:17500-10.

Boesen A, Sundar K, Coico R. Lassa fever virus peptides predicted by computational analysis induce epitope-specific cytotoxic-T-lymphocyte responses in HLA-A2.1 transgenic mice. Clin Diagn Lab Immunol 2005;12:1223-30.

Kirti, Pranav Kumar P. Human papilloma virus associated cervical cancer: a review. Asian J Pharm Clin Res 2016; 9:14-7.

Chozhavel Rajanathan TM, Lakshmikanth G, Agastian P. Evaluating the efficacy of aluminum phosphate formulated l2 based human papilloma virus vaccine. J Pharm Clin Res 2015;8:199-201.

Borappa M, Kanakarajan S, Kamalanathan A. In silico docking of quercetin compound against the hela cell line proteins. Int J Curr Pharm Res 2015;7:13-6.

About this article




Epitope prediction, CTL epitopes, Human papilloma virus, BIMAS, SYFPEITHI, RANKPEP





Additional Links

Manuscript Submission


International Journal of Pharmacy and Pharmaceutical Sciences
Vol 9, Issue 11, 2017 Page: 175-182

Online ISSN



61 Views | 10 Downloads

Authors & Affiliations

Manikandan Mohan
Department of Biotechnology, Kalasalingam University, Krishnankoil - 626 126 Tamilnadu, India

Krishnan Sundar
Department of Biotechnology, Kalasalingam University, Krishnankoil - 626 126 Tamilnadu, India

Article Tools


  • There are currently no refbacks.