CYTOTOXICITY, ANTI-POLIOVIRUS ACTIVITY AND IN SILICO BIOLOGICAL EVALUATION OF CONSTITUENTS FROM MAYTENUS GONOCLADA (CELASTRACEAE)

  • Mauro Lucio G Oliveira Universidade Federal de Minas Gerais
  • Regina Aparecida Gomes Assenco Universidade Federal de Ouro Preto
  • Grácia Divina De Fátima Silva Universidade Federal de Minas Gerais
  • Julio César D Lopes Universidade Federal de Minas Gerais
  • Fernando César Silva Universidade Federal de Minas Gerais
  • Maria Célia Da Silva Lanna Universidade Federal de Ouro Preto
  • José Carlos Magalhães Universidade Federal de São João Del-Rei
  • Lucienir Pains Duarte Universidade Federal de Minas Gerais
  • Sidney Augusto Vieira Filho Universidade Federal de Ouro Preto

Abstract

Objective: The in silico free access web tools PASS online and ChemMapper were used to predict potential biological activities of compounds 1 to 8 isolated from Maytenus gonoclada (Celastraceae). The constituents 4’-O-methylepigalocatequin (6), tingenone (7) and proanthocyanidin A (8), and ethanolic extracts were subjected to in vitro cytotoxicity using VERO cells and anti-Poliovirus assays.

Methods: QSAR and molecular superposition, correlating the average number of pharmacophores were used in the prediction studies. Cellular line VERO ATCC CCL-81 was used to determine anti-Poliovirus effect, observed by colorimetric (MTT) method. The annexing V/propidium iodide assay was used to determine the occurrence of apoptosis in the cytotoxicity assays.

Results: The experimental results found for constituents 6-8 were in accordance with observed data obtained through PASS online and ChemMapper simulation.

Conclusion: Compound 7 showed higher cytotoxic and apoptosis induction properties, and 6 and 8 presented anti-Poliovirus activity.

 

 

Keywords: Maytenus gonoclada, VERO cells Cytotoxicity, Anti-Poliovirus, Apoptosis, ChemMapper, PASS online.

Downloads

Download data is not yet available.

Author Biographies

Mauro Lucio G Oliveira, Universidade Federal de Minas Gerais
Departamento de Quimica
Regina Aparecida Gomes Assenco, Universidade Federal de Ouro Preto
Departamento de Biologia.                                 Instituto de Ciências Exatas e Biológicas.
Grácia Divina De Fátima Silva, Universidade Federal de Minas Gerais
Departamento de Quimica.
Julio César D Lopes, Universidade Federal de Minas Gerais
Departamento de Quimica
Fernando César Silva, Universidade Federal de Minas Gerais
Departamento de Química
Maria Célia Da Silva Lanna, Universidade Federal de Ouro Preto
Departamento de Biologia.                                 Instituto de Ciências Exatas e Biológicas
José Carlos Magalhães, Universidade Federal de São João Del-Rei
Departamento de Química, Biotecnologia e Engenharia de Bioprocessos
Lucienir Pains Duarte, Universidade Federal de Minas Gerais
Departamento de Quimica
Sidney Augusto Vieira Filho, Universidade Federal de Ouro Preto
DEFAR - Escola de Farmácia

References

1. Schulz PV, Hansel R, Tyler VE. Rational Phytotherapy, A Physicians Guide for Physicians and Pharmacists. Berlin, Springer-Verlag, 5th ed. 2004. p. 417.
2. Veiga VFJ, Pinto AC, Maciel MAM. Plantas medicinais: cura segura? Quím Nova 2005;28(3):519-28.
3. Newman DJ, Cragg GM. Natural products as sources of new drugs over last 25 years. J Nat Prod 2007;70:461-77.
4. Jassim SAA, Naji MA. Novel antiviral agents: a medicinal plant perspective. J Appl Microb 2003;95:412-27.
5. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008;13(19):894–901.
6. Schmidt BJ, Papin JA, Musante CJ. Mechanistic systems modeling to guide drug discovery and development. Drug Discov Today 2013;18:13-4.
7. Wang X, Chen H, Yang F, Gong J, Li S, Pei J, et al. iDrug: a web-accessible and interactive drug discovery and design platform. J Cheminform 2014;6:28.
8. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 2000;16(8):747-8.
9. Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Current Pharm Design 2010;16(15):1703-17.
10. Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, et al. Chem mapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3d similarity method. Bioinformatics 2013;29(14):1827-9.
11. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 2012;55:6582-94.
12. Lu W, Liu X, Cao X, Xue M, Liu K, Zhao Z, et al. SHAFTS: a hybrid approach for 3d molecular similarity calculation. 2. prospective case study in the discovery of diverse p90 ribosomal s6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem 2011;54:3564-74.
13. Liu X, Jiang H, Li H. SHAFTS: a hybrid approach for 3d molecular similarity calculation. 1. method and assessment of virtual screening. J Chem Inform Modell 2011;51(9):2372-85.
14. Wilker MMJ, Tarcísio NC. Study of the pharmacological properties of espinheira-santa (Maytenus ilicifolia Mart. ex Reissek) and of two adulterating species. Rev Saúde Desenv 2012;1:20-46.
15. Haslam E, Lilley TH, Martin R, Magnolato D. Traditional herbal medicines, the role of polyphenols. Pl Med 1989;55:1-8.
16. Leite JPV, Lombardi JA, Chiari E, Oliveira AB. Isolamento biomonitorado de uma substância tripanossomicida de Arrabidaea triplinervia (Bignoniaceae), o ácido ursólico. Rev Bras Farmacogn 2001;11:77-87.
17. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1995;1:1046-51.
18. Vivek R, Yadav S, Prasad B, Ramaswamy K, Bharat BA. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins 2010;2:2428-66.
19. Oliveira MLG, Duarte LP, Silva GDF, Vieira Filho SA, Knupp VF, Alves FG. 3-Oxo-12α-hydroxyfriedelane from Maytenus gonoclada: structure elucidation by 1H and [13]C chemical shift assignments and 2D-NMR spectroscopy. Mag Res Chem 2007;45:895-8.
20. Silva FC, Guedes FAF, Franco MW, Barbosa FAR, Marra CA, Duarte LP, et al. Algistatic effect of a quinonamethide triterpene on Microcystis novacekii. J Appl Phycol 2013;25(6):1723-8.
21. Silva FC, Oliveira MLG, Rodrigues VG, Carvalho SM, Duarte LP, Silva GDF, et al. Attractive effects of hexane extract and triterpenes from maytenus gonoclada on tenebrio molitor. Chem Nat Comp 2013;49(3):571-4.
22. Gong Y, Raj KM, Luscombe CA, Gadawski I, Tam T, Chuj GC, Sacks SL. The synergistic effects of betulin with acyclovir against Herpes simplex viruses. Antivir Res 2004;64:127-30.
23. Alvarenga E, Ferro EA. Bioactive triterpenes and related compounds from Celastraceae. Stud Nat Prod Chem 2006;33:239-307.
24. Assenco RAG, Silva FC, Lanna MCS, Magalhaes CB, Duarte LP, Silva GDF, et al. Anti-Rotavirus (RV, SA-11) property of polar substances isolated from maytenus gonoclada (celastraceae). Eur J Sci Res 2013;114:256-68.
25. Marles MAS, Ray H, Gruber MY. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 2003;64:367-83.
26. Vayalil PK, Elmets CA, Katiyar SK. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 2003;24:927-36.
27. Dobrovolný PL, Bess D. Optimized PCR-based detection of mycoplasma. J Vis Exp 2011;52:4-7.
28. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 1987;56:279–85.
29. Burleson FG, Chambers TM, Wiedbrauk DL. Virology: a laboratory manual. London: Academic Press; 1992. p. 250.
30. Chattopadhyay D, Naik TN. Antivirals of ethnomedicines and ethnomedicinal origin, structure-activity relationship and scope. Mini-Rev Med Chem 2007;7(3):275-301.
31. Betancur-Galvis LA, Morales GE, Forero JE, Roldan J. Citotoxic and antiviral activitie of Colombian medicinal plant extracts of the Euphorbia genus. Mem do Inst Oswaldo Cruz 2002;97:541-6.
32. Berdis AJ. DNA polymerases as therapeutic targets. Biochem 2008;47(32): 8253-60.
33. Mitsuishi M, Masuda S, Kudo I, Murakami M. Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells. Biochem J 2006;393(1):97-106.
34. Mueller S, Wimmer E, Cello J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res 2005;111(2):175-93.
35. Racaniello VR. One hundred years of poliovirus pathogenesis. Virology 2006;344(1):9-16.
36. Bodian D. Emerging concept of poliomyelitis infection. Sci 1955;122(3159):105-8.
37. Sabin AB. Pathogenesis of poliomyelitis, reappraisal in the light of new data. Sci 1956;123(3209):1151-7.
38. Nathanson N. The pathogenesis of poliomyelitis: What we dont’t know. Adv Virus Res 2008;71:1-50.
39. Horstmann DM, Paul JR. The incubation period in human poliomyelitis and its implications. J Amer Med Assoc 1947;135(1):11-1.
40. Sartwell PE. The incubation period of poliomyelitis. Am J Public Health 1952;42(11):1403-8.
41. Guinea R, López-Rivas A, Carrasco L. Modification of phospholipase C and phospholipase A2 activities during poliovirus infection. J Biol Chem 1990;264(36):21923-7.
42. Irurzun A, Pérez L, Carrasco L. Enhancement of phospholipase activity during Poliovirus infection. J Gen Virol 1993;74(6):1063-71.
43. Adam-Klages S, Schwandner R, Lüschen S, Ussat S, Kreder D, Krönke M. Caspase-mediated inhibition of human cytosolic phospholipase a2 during apoptosis. J Immunol 1998;161:5687-94.
44. Darnell JE. Transcription factors as targets for cancer therapy. Nat Rev Cancer 2001;2:740-9.
45. Wyllie AH. Apoptosis: cell death under homeostatic control. Mechanisms Models Toxicol 1987;11:3-10.
46. McDermott CM, Nho CW, Holton BH. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types Cover image. Toxicon 1998;36(12):1981–96.
47. Bachmann M, Möröy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 2005;37(4):726-30.
48. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010;95:1004-15.
49. Yabuno T, Konishi N, Nakamura M, Tsuzuki T, Tsunoda S, Sakaki T, et al. Drug resistance and apoptosis in ENU-induced rat brain tumor treated with anti-cancer drugs. J Neuro-Oncol 1998;36(2):105-12.
50. Li RJ, Qiu SD, Wang HX, Tian H, Wang LR, Huo YW. Androgen receptor: a new player associated with apoptosis and proliferation of pancreatic beta-cell in type 1 Diabetes mellitus. Apoptosis 2008;13(8):959-71.
51. Liu R, Takayama S, Zheng Y, Froesch B, Chen G, Zhang X, et al. Acid-induced apoptosis in cancer cells receptor and its inhibition of retinoic interaction of bag-1 with retinoic acid. J Biol Chem 1998;273:16985-92.
52. Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 2009;11(3):1-12.
53. Bailey ST, Shin H, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci 2012;109(44):18060-05.
54. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 2011;30(87):1-14.
55. Freshney RI. Culture of Animal Cells, a Manual of Basic Technique. 4th ed. New York: Wiley; 2000. p. 215–7.
56. Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, et al. Methods of in vitro Toxicology. Food Chem Toxicol 2002;40:193-236.
57. ISO 10993-5. International Standard for Biological Evaluation of Medical Devices-Part 5. Tests for in vitro cytotoxicity; 2009.
58. Rieser MJ, Gu ZN, Fang X, Zeng L, Wood KV, Mclaughlin JL. Five novel mono-tetrahydrofuran ring acetogenins from the seeds of Annona muricata. J Nat Prod 1996:59(2):100-8.
59. Vasilevsky SF, Govdi AI, Sorokina IV, Tolstikova TG, Baev DS, Tolstikov GA, et al. Rapid access to new bioconjugates of betulonic acid via click chemistry. Bioorg Med Chem Lett 2011;21(1):62-5.
Statistics
469 Views | 757 Downloads
How to Cite
Oliveira, M. L. G., R. A. G. Assenco, G. D. D. F. Silva, J. C. D. Lopes, F. C. Silva, M. C. D. S. Lanna, MagalhãesJ. C., L. P. Duarte, and S. A. Vieira Filho. “CYTOTOXICITY, ANTI-POLIOVIRUS ACTIVITY AND IN SILICO BIOLOGICAL EVALUATION OF CONSTITUENTS FROM MAYTENUS GONOCLADA (CELASTRACEAE)”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 6, no. 10, 1, pp. 130-7, https://innovareacademics.in/journals/index.php/ijpps/article/view/2553.
Section
Original Article(s)