DEVELOPMENT OF A SENSOR BY ELECTRO-POLYMERIZATION OF ERICHROME BLACK-T ON GLASSY CARBON ELECTRODE AND DETERMINATION OF AN ANTI-INFLAMMATORY DRUG DICLOFENAC

  • Rohini M. Hanabaratti Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
  • Jayant I. Gowda P.G. Department of Chemistry, P. C. Jabin Science College, Hubballi-580031, Karnataka, India
  • Suresh M. Tuwar Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India

Abstract

Objective: The aim of this study was to develop a simple, reliable voltammetric method and its validation for determination of nonsteroidal anti-inflammatory drug diclofenac (DFC).


Methods: The proposed method was based on electro-oxidation of DFC at poly (erichrome black T) modified glassy carbon electrode (PEBT/GCE) in 0.2 M phosphate buffer solution of pH 7.0. Cyclic voltammetry and differential pulse voltammetric techniques were employed to study electro-oxidation behavior. Under the optimal conditions, variations of EBT concentration, effect of pH, scan rate on the oxidation of DFC was studied.


Results: A well-defined oxidation peak at about +0.59 V vs. standard calomel electrode was observed for voltammetric detection of DFC. pH effect shows the participation of an equal number of protons and electrons in the mechanism. The relation between a logarithm of peak current with the logarithm of scan rate indicated adsorption controlled behavior of electrode process. Concentration variations show a good linear response in the range 0.05 µM to 40 µM with the detection limit of 5.25 × 10-8 M.


Conclusion: The prepared sensor exhibited good selectivity, sensitivity, and stability for the detection of DFC in the pharmaceutical dosage form and real samples. The developed method could possibly be adopted for pharmacokinetic studies and also in clinical and quality control laboratories where time and economy were important.

Keywords: Diclofenac, Modified electrode, Detection limit, Calibration plot

Downloads

Download data is not yet available.

References

1. Iliescu T, Baia M, Miclaus V. A Raman spectroscopic study of the diclofenac sodium b-cyclodextrin interaction. Eur J Pharm Sci 2004;22:487-95.
2. Tuncay M, Calis S, Kas HS, Ercan MT, Peksoy I, Hincal AA. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int J Pharm 200;195:179-88.
3. Nuhu AA, Sallau MS, Bala T. Fixed sized simplex optimization of the spectrophotometric method for the quantitative determination of diclofenac in pharmecutical preparations. Int J Adv Res 2015;3:234–45.
4. Mazumdar K, Dutta NK, Dastidar SG, Motohashi N, Shirataki Y. Diclofenac in the management of E. coli urinary tract infections. In Vivo 2006;20:613-9.
5. Davies NM, Saleh JY, Skjodt NM. Detection and prevention of NSAID-induced enteropathy. J Pharm Pharm Sci 2000;3:137–55.
6. Fortun PJ, Hawkey CJ. Nonsteroidal anti-inflammatory drugs and the small intestine. Curr Opin Gastroenterol 2005;21:169–75.
7. Ciltas U, Yilmaz B, Kaban S, Bilge KA, Gulsah N. Square wave voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Iran J Pharm Res 2015;14:715–22.
8. Shamsipur M, Jalali F, Ershad S. Preparation of a diclofenac potentiometric sensor and its application to pharmaceutical analysis and to drug recovery from biological fluids. J Pharm Biomed Anal 2005;37:943-7.
9. Gonzalez L, Yuln G, Volonte MG. Determination of cyanocobalamin, betamethasone, and diclofenac sodium in pharmaceutical formulations, by high-performance liquid chromatography. J Pharm Biomed Anal 1999;20:487-92.
10. Jin W, Zhang J. Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J Chromatogr A 2000;868:101-7.
11. Sun SW, Fabre H. Practical approach for validating the TLC assay of an active ingredient in a pharmaceutical formulation. J Liq Chromatogr 1994;17:433-45.
12. Arancibia JA, Boldrini MA, Escandar GM. Spectrofluorimetric determination of diclofenac in the presence of ?-cyclodextrin. Talanta 2000;52:261-8.
13. Sioufi A, Pommier F, Godbillon J. Determination of diclofenac in plasma and urine by capillary gas chromatography-mass spectrometry with possible simultaneous determination of deuterium-labelled diclofenac. J Chromatogr B 1991;571:87-100.
14. Daneshgar P, Norouzi P, Ganjali MR, Dinarvand R, Moosavi Movahedi AA. Determination of diclofenac on a dysprosium nanowire-modified carbon paste electrode accomplished in a flow injection system by advanced filtering. Sensors 2009;9:7903-18.
15. Goyal RN, Chatterjee S, Singh Rana AR. The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac. Carbon 2010;48:4136-44.
16. Goyal RN, Sanghamitra C, Bharati A. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sens Actuators B 2010;145:743-8.
17. Arvand M, Gholizadeh TM, Zanjanchi MA. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mat Sci Eng C 2012;32:1682-9.
18. Chethana BK, Basavanna S, Arthoba YN. Voltammetric determination of diclofenac sodium using tyrosine-modified carbon paste electrode. Ind Eng Chem Res 2012;51:10287-95.
19. Sarhangzadeh K, Khatami AA, Jabbari M, Bahari S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem 2013;43:1217-24.
20. Razmi H, Sarhang Zadeh K, Mohammad Rezaei R. Electrochemical behavior and voltammetric determination of diclofenac at a multi-walled carbon nanotube-ionic liquid composite modified carbon ceramic electrode. Anal Lett 2013;46:1885-96.
21. Ensafi AA, Maedeh I, Karimi Maleh H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 2013;19:137-44.
22. Wei L, Borowiec J, Zhu L, Zhang J. Electrochemical investigation on the interaction of diclofenac with DNA and its application to the construction of a graphene-based biosensor. J Solid State Electrochem 2012;16:3817-23.
23. Abdolmajid BM, Ali M, Mozhgan F. Application of carbon nanotube-graphite mixture for the determination of diclofenac sodium in pharmaceutical and biological samples. Pharm Anal Acta 2012;3:1-6.
24. Botello JC, Perez Caballero G. Spectrophotometric determination of diclofenac sodium with methylene blue. Talanta 1995;42:105-8.
25. Brett CMA, Inzelt G, Kertesz V. Poly (methylene blue) modified electrode sensor for haemoglobin. Anal Chim Acta 1999;385:119-23.
26. Zhao H, Zhang Y, Yuan Z. Determination of dopamine in the presence of ascorbic acid using poly (hippuric acid) modified glassy carbon electrode. Electroanal 2002;14:1031-4.
27. Zhang Y, Jin G, Wang Y, Yang Z. Determination of dopamine in the presence of ascorbic acid using poly (Acridine red) modified glassy carbon electrode. Sensors 2003;3:443-50.
28. Manjunatha JG, Deraman M, Basri NH. Electrocatalytic detection of dopamine and uric acid at poly (basic blue b) modified carbon nanotube paste electrode. Asian J Pharm Clin Res 2015;8:40-5.
29. Roy PR, Okajima T, Ohsaka T. Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N, N-dimethylaniline)-modified electrodes. Bioelectrochem 2003;59:11-9.
30. Zhang Y, Cai Y, Su S. Determination of dopamine in the presence of ascorbic acid by poly (styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. Anal Biochem 2006;350:285-91.
31. Xu F, Gao M, Wang L, Shi G, Zhang W, Jin L, et al. Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model. Talanta 2001;55:329-36.
32. Zhao H, Zhang Y, Yuan Z. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Anal Chim Acta 2001;441:117-22.
33. Gilbert O, Swamy BEK, Chandra U, Sherigara BS. Simultaneous detection of dopamine and ascorbic acid using polyglycine modified carbon paste electrode: a cyclic voltammetric study. J Electroanal Chem 2009;636:80-5.
34. Yao H, Sun Y, Lin X, Tang Y, Liu A, Li G, et al. Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly (eriochrome black T) film modified glassy carbon electrode. Anal Sci 2007;23:677-82.
35. Yao H, Sun Y, Lin X, Tang Y, Huang L. Electrochemical characterization of poly (eriochrome black T) modified glassy carbon electrode and its application to the simultaneous determination of dopamine, ascorbic acid, and uric acid. Electrochem Acta 2007;52:6165-71.
36. Liheng W, Xiaolei L, Yingtao D, Fei G, Qingxiang W. DNA biosensor based on a glassy carbon electrode modified with electropolymerizederiochrome black T. Microchim Acta 2014;181:155–62.
37. Gilbert O, Kumara Swamy BE, Chandra U, Sherigara BS. Electrocatalytic oxidation of dopamine and ascorbic acid at poly (eriochrome black-T) modified carbon paste electrode. Int J Electrochem Sci 2009;4:582-91.
38. Manjunatha JG. A new electrochemical sensor based on modified carbon nanotube-graphite mixture paste electrode for voltammetric determination of resorcinol. Asian J Pharm Clin Res 2017;10:295-300.
39. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 1979;101:19-28.
40. Bard AJ, Faulkner LR. Electrochemical methods fundamentals and applications. 2nd ed. Wiley; 2004. p. 236.
41. Yunhua W, Xiaobo J, Shengshui H. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochem 2004;64:91-7.
42. Kianoush S, Ali AK, Mohammad J, Siavash B. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem 2013;43:1217–24.
43. Majid A, Tahereh MG, Mohammad AZ. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mat Sci Eng C 2012;32:1682–9.
44. Maryam G, Mohammad AK, Fatemeh K, Vinod KG, Mohsen K, Hassan B, et al. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J Mol Liq 2014;197:114–9.
45. Florica M, Monica I, Andriana R, Georgeta B, Joop S. Electrochemical determination of diclofenac sodium in aqueous solution on Cu?doped zeolite?expanded graphite?epoxy electrode. Electroanalysis 2010;22:2058-63.
46. Rogiyeh P, Mohammad RB. Silica nanoparticles modified carbon paste electrode as a voltammetric sensor for determination of diclofenac. Anal Bianal Chem Res 2017;4:261-8.
47. Shalauddin M, Shamima A, Samira B, Mohd SAK, Nahrizul AK, Wan JB. Immobilized copper ions on MWCNTS-chitosan thin film: enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int J Hydrog Energy 2017:42:19951-60.
Statistics
72 Views | 142 Downloads
Citatons
How to Cite
Hanabaratti, R. M., J. I. Gowda, and S. M. Tuwar. “DEVELOPMENT OF A SENSOR BY ELECTRO-POLYMERIZATION OF ERICHROME BLACK-T ON GLASSY CARBON ELECTRODE AND DETERMINATION OF AN ANTI-INFLAMMATORY DRUG DICLOFENAC”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 11, no. 2, Dec. 2018, pp. 81-87, doi:10.22159/ijpps.2019v11i2.30648.
Section
Original Article(s)