NANOMATERIALS BASED ACETYLCHOLINESTERASE BIOSENSORS FOR ORGANOPHOSPHORUS COMPOUNDS DETECTION: REVIEW

  • Vikas Dhull Guru Jambeshwar University of Science & Technology, Hisar
  • Neeraj Dilbaghi Guru Jambeshwar University of Science & Technology, Hisar
  • Vikas Hooda Maharshi Dayanand University, Rohtak

Abstract

Due to intense pressure on agriculture for supporting exponentially growing population pesticides are used on an alarming scale. As these pesticides contain Organophosphorus (OP) compounds which are highly toxic and interfere with functioning of enzyme Acetylcholinestrase (AChE) and finally affecting Central Nervous System (CNS). So, there is an urgent need to monitor OP compounds concentration regularly in the marketed food products and even in the environment (water, soil). Here we focus on the different nanomaterials used for the fabrication of the AChE biosensors for detection of OP compounds which is based on inhibition of AChE. The merits and demerits of the different nanomaterials which are being used as supports are also discussed. The mode of detection, detection limit, linearity range, time of incubation, storage stability of the biosensors is also reviewed. Nanomaterial as an important class of supports used for the AChE biosensors due to their valuable properties. Among all the nanomaterials used Gold nanoparticles (AuNPs) have gained an advantage as they are explored with time.

 

Keywords: Pesticides, Acetylcholinesterase, Acetylcholinestrase Biosensor, Immobilization support, Detection Limit

Downloads

Download data is not yet available.

Author Biographies

Vikas Dhull, Guru Jambeshwar University of Science & Technology, Hisar
Department of Bio & Nanotechnology
Neeraj Dilbaghi, Guru Jambeshwar University of Science & Technology, Hisar
Prof. Neeraj Dilbaghi, Department of Bio & Nano Technology
Vikas Hooda, Maharshi Dayanand University, Rohtak
Assistant Professor, Centre for Biotechnology

References

1. Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G. Detection of carbamic and organophosphorus pesticides in water samples using a cholinesterase biosensor based on Prussian blue-modified screen-printed electrode. Anal Chim Acta 2006;580:155-62.
2. Li BX, He YZ, Xu CL. Simultaneous determination of three organophosphorus pesticide residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta 2007;72:223-30.
3. FAO, Proceedings of the C 93/94 Document of 27th Session of the FAO Conference, Rome, Italy; 1993.
4. L Aspelin, US Environmental Protection Agency: Washington, DC; 1994.
5. Minh CT, Pandey PC, Kumaran S. Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase. Biosens Bioelectron 1990;5:461-71.
6. Cremisini C, Sario SD, Mela J, Pilloton R, Palleschi G. Evaluation of the use of free and immobilized acetylcholinestrase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal Chim Acta 1995;311:273–80.
7. Eyer H, Moran DPJ, Rajah KK. Fats in food products. Food Sci Technol 1995;28:162.
8. Steenland K. Chronic neurological effects of organophosphate pesticides subclinical damage does occur, but longer follow up studies are needed. Br Med J 1996;312:1312–3.
9. Jamal GA. Neurological syndromes of organophosphorus compounds. Toxol Rev 1997;16:133-70.
10. Ray DE. Chronic effects of low level exposure to anticholinesterases a mechanistic review. Toxicol Lett 1998;102:527-33.
11. Donarski WJ, Dumas DP, Heitmeyer DP, Lewis VE, Raushel FM. Structure–activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochem 1989;28:4650-5.
12. Chapalamadugu S, Chaudhry GR. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol 1992;12:357-89.
13. Dikshith TSS. Toxicology of Pesticides inAnimals. CRC Press, Boston; 1991. p. 1.
14. Vreuls JJ, Swen RJ, Goudriaan VP, Kerkhoff MA, Jongenotter GA, Brinkman UA. Automated on-line gel permeation chromatography–gas chromatography for the determination of organophosphorus pesticides in olive oil. J Chromatogra A 1996;750:275-86.
15. Zhang J, Luo A, Liu P, Wwl S, Wang G, Wei S. Detection of Organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization. Anal Sci 2009;25:511-5.
16. Lu WJ, Chen YL, Zhu JH, Chen XG. The combination of flow injection with electrophoresis using capillaries and chips. Electrophor 2009;30:83-91.
17. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95.
18. Hoff GR, Zoonen PV. Trace analysis of pesticides by gas chromatography. J Chromatogra A 1999;843:301-22.
19. Hernandez F, Sancho JV, Pozo O, Lara A, Pitarch E. Rapid direct determination of pesticides and metabolites in environmental water samples at sub-mg/L level by on-line solid-phase extraction–liquid chromatography–electrospray tandem mass spectrometry. J Chromatogra A 2001;939:1-11.
20. Sherma J. Thin-layer chromatography of pesticides: a review of applications for 2002–2004. Acta Chromatogra 2005;15:5-30.
21. Sutherland TD, Horne I, Russell RJ, Oakeshott JG. Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of b endosulfan. Appl Environ Microbiol 2002;68:6237-45.
22. Mitobe H, Ibaraki T, Tanabe A, Kawata K, Yasuhara A. High performance liquid chromatographic determination of pesticides in soluble phase and suspended phase in river water. Toxicol Environ Chem 2001;81:97-110.
23. Wang C, Li XB, Liu YH, Guo YR, Xie R, Gui WJ, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides. J Agric Food Chem 2010;58:5658-63.
24. Mauriz E, Calle A, Montoya A, Lechuga LM. Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 2006;69:359-64.
25. Crespilho FN, Luz RAS, Lost RM. Nanomaterials for biosensors and Implantable devices. Nanobioelectrochem 2013;2:27-48.
26. Periasamy AP, Umasankar Y, Chen SM. Nanomaterials-acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensor 2009;9:4034-55.
27. Lin TJ, Huang KT, Liu CY. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 2006;22:513-8.
28. Wang M, Gu XG, Zhang GX, Zhang DQ, Zhu DB. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Langmuir 2009;25:2504-07.
29. Zheng ZZ, Zhou YL, Li XY, Liua SQ, Tang ZY. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 2011;26:3081-5.
30. Yu T, Shen JS, Bai HH, Guo L, Tang JJ, Jiang YB, et al. A photoluminescent nanocrystalbasedsignaling protocol highly sensitive to nerve agents and highly toxic organophosphate pesticides. Anal 2009;134:2153-7.
31. Dhull V, Gahlaut A, Dilbaghi N, Hooda V. Acetylcholinesterase biosensors for electrochemical detection of organophosphorus compounds: a review. Biochem Res Int 2013;18:1.
32. Constantine CA, Gattas-Asfura KM, Mello SV, Crespo G, Rastogi V, Cheng TC, et al. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped cdse quantum dots for the detection of paraoxon. J Phys Chem B 2003;107:13762-4.
33. Ji XJ, Zheng JY, Xu JM, Rastogi VK, Cheng TC, DeFrank JJ, et al. (CdSe) ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 2005;109:3793-9.
34. Simonian AL, Good TA, Wang SS, Wild JR. Nanoparticle based optical biosensors for the direct detection of organophosphate chemical warfare agent and pesticides. Anal Chim Acta 2005;534:69-77.
35. Constantine CA, Asfura KMG, Mello SV, Crespo G, Rastogi V, Cheng TC, et al. Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 2003;19:9863-7.
36. Du D, Chen WJ, Zhang WY, Liu DJ, Li HB, Lin YH. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens Bioelectron 2010;25:1370-5.
37. Zhang W, Asiri AM, Liu D, Du D, Lin Y. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal Chem 2014;54:1.
38. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal, Davis V, Wild J, et al. Enhanced stability of enzyme organophosphate hy-drolase interfaced on the carbon nanotubes. Colloids Surf B Biointerfa 2010;77:69-74.
39. Chough SH, Mulchandani A, Mulchandani P, Chen W, Wang J, Rogers KR. Organophosphorus hy-drolase-based amperometric sensor: modulation of sen-sitivity and substrate selectivity. Electroanal 2002;14:273-6.
40. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, et al. Determination of organophosphate pesticides at a car-bon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 2005;530:185-9.
41. Laothanachareon T, Champreda V, Sritongkham P, Somasundrum M, Surareungchai W. Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds. World J Microbiol Biotechnol 2008;24:3049-55.
42. Du D, Chen W, Zhang W, Liu D, Li H, Lin Y. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube. au nano-composite for enhanced detection of methyl parathion. Biosens Bioelectron 2010;25:1370-5.
43. Park KW. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 2002;106:1869-77.
44. Deab EI, Ohsaka MS. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 2002;4:288-92.
45. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R. Immobilization of acetylcholinesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates, and nerve agents. Biosens Bioelectron 2009;25:832-8.
46. Hrapovic S. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 2004;76:1083-8.
47. Liu CY, Hu JM. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens Bioelectron 2009;24:2149-54.
48. Li Z, Wnag X, Wen G, Shuang S, Dong C, Paau MC, et al. Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor. Biosens Bioelectron 2011;26:4619.
49. Baioni AP. Copper hexacyanoferrate nanoparticles modified electrodes: a versatile tool for biosensors. J Electroanal Chem 2008;622:219-24.
50. Salimi A, Hallaj R, Soltanian S. Fabrication of a sensitive cholesterol biosensor based on cobalt oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis 2009;21:2693-700.
51. Astruc D, Chardac F. Dendritic catalysts and dendrimers in catalysis. Chem Rev 2001;101:2991-3024.
52. Crooks RM. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 2001;34:181-90.
53. Siqueira JR. Bifunctional electroactive nanostructured membranes. Electrochem Commun 2007;9:2676-80.
54. Viswanathan S, Radecka H, Radecki J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 2009;24:2772-7.
55. Bucur B, Fournier D, Danet A, Marty JL. Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Anal Chim Acta 2006;562:115-21.
56. Shulga O, Kirchhoff JR. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem Commun 2007;9:935-40.
57. Song Y, Zhang M, Wang L. A novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides. Electrochim Acta 2011;56:7267-71.
58. Andreescu S, Noguer T, Magearu V, Marty JL. Screenprinted electrode based on ache for the detection of pesticides in presence of organic solvents. Talanta 2002;57:169-76.
59. Wu S, Huang F, Lan X, Wang X, Wang J, Meng C. Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sens Actuators B 2013;177:724-9.
60. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R. Immobilization of acetylcholineesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectro 2009;25:832-8.
61. Dyk JSV, Pletschke B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 2011;82:291-307.
62. Du D, Chen S, Cai J, Zhang A. Immobilization of acetylcholinesterase on gold nanoparticles embedded in solgel film for amperometric detection of organophosphorous insecticide. Biosens Bioelectron 2007;23:130-4.
63. Wink T, Zuilen SJV, Bult A, Bennekom WPV. Selfassembled monolayers for biosensors. Analyst 1997;122:43R-50R.
64. Campas M, Simon BP, Marty JL. A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 2009;20:3-9.
65. Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci (Oxford) 2004;29:699-766.
66. Dhawan G, Sumana G, Malhotra BD. Recent developments in urea biosensors. Biochem Eng J 2009;44:42-52.
67. Alonso GA, Istamboulie G, Noguer T, Marty JL, Munoz R. Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sens Actuators B 2012;164:22-8.
68. Guerente LC, Cosnier S, Innocent C, Mailley P. Development of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives. Anal Chim Acta 1995;311:23-30.
69. Jie G, Liu B, Pan H, Zhu JJ, Chen HY. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 2007;79:5574-81.
70. Wang D, Rogach AL, Caruso F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett 2002;2:857-61.
71. Pundir CS, Chauhan N. Acetylcholinesterase inhibition based biosensors for pesticide determination: a review. Anal Biochem 2012;429:19-31.
72. Sun X, Wang X. Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 2010;25:2611-4.
73. Wang K, Li HN, Wu J. TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. Analyst 2011;136:3349-54.
74. Ion AC, Ion I, Culetu A. Acetylcholinesterase voltammetric biosensors based on carbon nanostructure-chitosan composite material for organophosphate pesticides. Mater Sci Eng C 2010;30:817-21.
75. Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G. Acetylcholinesterase biosensor based on single-walled carbon nanotubes—co phthalocyanine for organophosphorus pesticides detection. Talanta 2011;85:216-21.
76. Norouzi P, Hamedani MP, Ganjali MR, Faridbod F. A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 2010;5:1434-46.
77. Wang K, Liu Q, Dai L. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS decorated graphene nanocomposite. Anal Chim Acta 2011;695:84-8.
78. Du D, Huang X, Cai J, Zhang A. Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 2007;23:285-9.
79. Wink T, Zuilen SJV, Bult A, Bennekom WPV. Self assembled monolayers for biosensors. Analyst 1997;122:43R-50R.
80. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Sci 2003;302:1545-8.
81. Viswanathan S, Wu LC, Huang MR, Ho JAA. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 2006;78:1115-21.
82. Viswanathan S, Radecki J. Nanomaterials in electrochemical biosensors for food analysis–A Review. Pol J Food Nutr Sci 2008;58:157-64.
83. Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004;16:19-44.
84. Renault NJ, Martelet C, Chevolot Y, Cloarec JP. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors 2007;7:589-614.
85. Kandimalla V, Ju H. Binding of acetylcholinesterase to multi-wall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide. Chem Eur J 2006;12:1074-80.
86. Quezada BC, Delia ML, Bergel A. Electrochemical microstructuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun 2011;101:2748-54.
87. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chimi Acta 2005;530:185-9.
88. Banks EC, Compton RG. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 2006;131:15-21.
89. Giordano N, Antonucci PL, Passalacqua E, Pino L, Arico AS, Kinoshita K. Relationships between physicochemical properties and electrooxidation behaviour of carbon materials. Electrochimi Acta 1991;36:1931-5.
90. Boudenne JL, Cerclier O, Galea J, Vlist EV. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode. Appl Catal 1996;143:185-202.
91. Somerset VS, Klink MJ, Baker PGL, Iwuoha EI. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J Environ Sci Health B 2007;42:297-304.
92. Palchetti I, Cagnini A, Carlo MD, Coppi C, Mascini M, Turner APF. Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal Chimi Acta 1997;337:315-21.
93. Andreescu S, Barthelmebs L, Marty JL. Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal Chimi Acta 2002;464:171-80.
94. Sotiropoulou S, Chaniotakis NA. Tuning the solgel microenvironment for acetylcholinesterase encapsulation. Biomaterial 2005;26:6771-9.
95. Du D, Wang M, Cai J, Qin Y, Zhang A. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sens Actuators B 2010;143:524-9.
96. Wei Y, Li Y, Qu Y, Xiao F, Shi G, Jin L. A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides. Anal Chimi Acta 2009;643:13-8.
97. Sharma SP, Tomar LNS, Acharya J, Chaturvedi A, Suryanarayan MVS, Jain R. Acetylcholinesterase inhibition based biosensor for amperometric detection of Sarin using single-walled carbon nanotube-modified ferrule graphite electrode. Sens Actuators B 2012;166-167:616-23.
98. Gooding JJ, Hibbert DB. The application of alkanethiols self-assembled monolayers to enzyme electrodes. Trends Anal Chem 1999;18:525-33.
99. Kaku T, Karan HI, Okamoto Y. Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system. Anal Chem 1994;66:1231-5.
100. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Sci 1996;271:933-7.
101. Li J, Lin XQ. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 2007;22:2898-905.
102. Cosnier S, Senillou A, Gratzel M, Comte P, Vlachopoulos N, Rnault NJ, et al. A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide. J Electroanal Chem 1999;469:176-81.
103. Retama JR, Cabarcos EL, Mecerreyes D, Ruiz BL. Design of an amperometric biosensor using polypyrrole-micro gel composites containing glucose oxidase. Biosens Bioelectron 2004;20:1111-7.
104. Njagi J, Andreescu S. Stable enzyme biosensors based on chemically synthesized Au– polypyrrole nanocomposites. Biosens Bioelectron 2007;23:168-75.
105. Gong J, Wang L, Zhang L. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 2009;24:2285-8.
106. Allen MJ, Tun VC, Kaner RB. Honeycomb Carbon: a review of graphene. Chem Rev 2010;110:132-45.
107. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV. Electric field effect in atomically thin carbon films. Sci 2004;306:666-9.
108. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008;3:101-5.
109. Allen MJ, Tun VC, Kaner RB. Honeycomb Carbon: a review of graphene. Chem Rev 2010;110:132-45.
110. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature 2006;442:282-6.
111. Fowler JD, Allen JM, Tung VC, Yang Y, Weiller BH. Practical chemical sensors from chemically derived graphene. ACS Nano 2009;3:301-06.
112. Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett 2008;8:3137-40.
113. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and dna transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 2008;8:4469-76.
114. Wang Y, Shao YY, Matson DW, Li JH, Lin YH. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010;4:1790-8.
115. Wu H, Wang J, Kang XH, Wang CM, Wang DH, Liu J, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 2009;80:403-6.
116. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009;3:3884-90.
117. Ao ZM, Yang J, Li S, Jiang Q, Ao ZM, Yang J, et al. Enhancement of CO detection in Al doped graphene Chem Phys Lett 2008;461:276-9.
118. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z, et al. Fracture and fatigue in graphene nanocomposites. Small 2010;6:179-83.
119. Ion AC, Ion I, Culetu A, Ghuase D, Moldovan CA, Iosub R, et al. Acetylcholinesterase voltammetric biosensors based on carbon nanostructure chitosan composite material for organophosphate pesticides. Mater Sci Eng C 2010;30:817-21.
120. Valcarcel M, Cardenas S, Simonet BM, Martinez YM, Lucena R. Carbon nanostructures as sorbent materials in analytical processes. Trends Anal Chem 2008;27:34-43.
121. Kachoosangi RT, Musameh MM, Yousef IA, Yousef JM, Kanan SM, Xiao L, et al. Carbon nanotubeionic liquid composite sensors and biosensors. Anal Chem 2009;81:435-42.
122. Sirvent MA, Merkoci A, Alegret S. Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology. Anal Chim Acta 2001;442:35-44.
123. Marques PRB, Nunes GS, Santos TCR, Andreescu S, Marty JL. Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection. Biosens Bioelectron 2004;20:825-32.
124. Wang K, Li HN, Wu J, Ju C, Yan JJ, Liu Q, et al. TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. Analyst 2011;136:3349-54.
125. Ion AC, Ion I, Culetu A, Ghuase D, Moldovan CA, Iosub R, Dinescu A. Acetylcholinesterase voltammetric biosensors based on carbon nanostructure chitosan composite material for organophosphate pesticides. Mater Sci Eng C 2010;30:817-21.
126. Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, et al. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite. Anal Chimi Acta 2011;695:84-8.
Statistics
888 Views | 1938 Downloads
How to Cite
Dhull, V., N. Dilbaghi, and V. Hooda. “NANOMATERIALS BASED ACETYLCHOLINESTERASE BIOSENSORS FOR ORGANOPHOSPHORUS COMPOUNDS DETECTION: REVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 2, Dec. 2014, pp. 17-24, https://innovareacademics.in/journals/index.php/ijpps/article/view/3781.
Section
Review Article(s)