STUDY OF THE ANTI-HYPERLIPIDEMIC EFFECT OF THE COMBINED ADMINISTRATION OF THREE NATURAL EXTRACTS IN A POLOXAMER-407 HYPERLIPIDEMIC MODEL AND THEIR LC-ESI-MS/MS2 AND HPLC PROFILING

  • S. A. MINA Pharmacognosy Department, Faculty of Pharmacy, Helwan University
  • A. M. ABD EL-MAKSOUD Nutritional Requirements and Growth Department, National Nutrition Institute
  • H. S. MOHAMMED HPLC Unit, Central Laboratory
  • M. A. FOUAD Herbal Lab, Food Hygiene Department, National Nutrition Institute

Abstract

Objective: Dyslipidaemia is considered a high-risk factor for inducing atherosclerosis and cardiovascular diseases (CVDs). This study aims to investigate the anti-hyperlipidemic effect of the co-administration of the ethanol extracts of both ginger (root and rhizome) and leek (leaves and bulbs) in addition to the aqueous extract of gum arabic. 


Methods: Rats were divided into eight groups: Hyperlipidaemia was induced in rats by a single intraperitoneal injection of Poloxamer 407 (P-407) [1 g/kg], negative control [saline injected], hyperlipidemic control [P-407 injected], positive control [Atorvastatin 70 mg/kg], groups four, five and six received ginger extract (400 mg/kg), leek extract (500 mg/kg) and gum arabic aqueous extract (7.5 g/kg) respectively and groups seven and eight received a co-administration of ginger, leek and gum arabic extracts at doses A and B respectively. Lipid profile was monitored. The profiling of all the tested extracts was performed by LC-ESI/MS and HPLC.


Results: A significant anti-hyperlipidemic activity (P<0.05) was seen for group eight among all the tested groups producing ≈54%, 72%, 50% and 72% decrease in the measured parameters total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) respectively. An overall of 56 and 45 compounds were tentatively identified in the ethanol extracts of ginger and leek, respectively. Galactose and arabinose sugars were found to be the major saccharides in gum arabic and glucuronic acid was the major polyuronide part.


Conclusion: the co-administration of a group of natural extracts in the given concentration proved to be more effective than the use of synthetic drugs or the use of a single component. 

Keywords: Hyperlipidaemia, Ginger, Gum arabic, Leek, Poloxamer 407

Downloads

Download data is not yet available.

References

1. Harnafi H, Caid HS, el Houda Bouanani N, Aziz M, Amrani S. Hypolipemic activity of polyphenol-rich extracts from Ocimum basilicum in triton WR-1339-induced hyperlipidemic mice. Food Chem 2008;108:205-12.
2. Goodman DS, Hulley SB, Clark LT. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Expert Panel Arch Inter Med 1988;148:36-69.
3. Bolkent S, Yanardag R, Karabulut Bulan O, Yesilyaprak B. Protective role of Melissa officinalis L. extract on liver of hyperlipidemic rats: a morphological and biochemical study. J Ethnopharmacol 2005;99:391-8.
4. Hasani Ranjbar S, Nayebi N, Moradi L, Mehri A, Larijani B, Abdollahi M. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; a systematic review. Cur Pharm Design 2010;16:2935.
5. Pushpa K, Mahesh K. An overview on plants with anti-inflammatory potential. Int J Curr Pharm Res 2017;9:1-4.
6. Chrubasik S, Pittler M, Roufogalis B. Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 2005;12:684-701.
7. Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions-a global benefit to health. Phytother Res 2002;16:603-15.
8. Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br J Nutr 2008;100:1269-75.
9. Phillips AO, Phillips GO. Biofunctional behaviour and health benefits of a specific gum Arabic. Food Hydrocoll 2011;25:165-9.
10. Ali B, Al-Qarawi A, Haroun E, Mousa H. The effect of treatment with gum Arabic on gentamicin nephrotoxicity in rats: a preliminary study. Art Ren Fail 2003;25:15-20.
11. Xue Qing Hu, Yang Sun, Eric Lau, Ming Zhao, Shi Bing Su. Advances in synergistic combinations of Chinese herbal medicine for the treatment of cancer. Curr Cancer Drug Targets 2016;16:346–56.
12. Sukandar EY, Safitri D, Aini N. The study of ethanolic extract of Binahong leaves (Anredera cordifolia (Ten.) steenis) and mulberry leaves (Morus nigra L.) in combination on hyperlipidemic rats. Asian J Pharm Clin Res 2016;9:288-92.
13. Suman M, Shivalinge GKP, Uttam P, Priyanka S. Evaluation of antidiabetic and antihyperlipidemic activity of newly formulated polyherbal antidiabetic tablets (phadt) in streptozocin induced diabetes mellitus in rats. Asian J Pharm Clin Res 2016;9:202-7.
14. Kaur R, Afzal M, Kazmi I, Ahamd I, Ahmed Z, Ali B, et al. Polypharmacy (Herbal and synthetic drug combination): a novel approach in the treatment of type-2 diabetes and its complications in rats. J Nat Med 2013;67:662-71.
15. Schmolka IR. Poloxamers in the pharmaceutical industry. Boca Raton, FL, USA: CRC Press; 1991.
16. Mansurah A. Effect of peristrophe bicalyculata on lipid profile of P-407-induced hyperlipidemic wistar rats. J Med Plant Res 2011;5:490-4.
17. Akinyemi AJ, Oboh G, Ademiluyi AO, Boligon AA, Athayde ML. Effect of two ginger varieties on arginase activity in hypercholesterolemic rats. J Acupun Meridian Stud 2016;9:80-7.
18. Badary OA, Yassin NA, El-Shenawy S, EL-Moneem MA, AL-Shafeiy HM. Study of the effect of Allium porrum on hypertension-induced in rats. Rev Latino Quim 2013;41:149-60.
19. Gado AM, Aldahmash BA. Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Des Dev Ther 2013;7:1245-52.
20. Burstein M, Scholnick H, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 1970;11:583-95.
21. Al-Nazawi MH, El-Bahr SM. Hypolipidemic and hypocholestrolemic effect of medicinal plant combination in the diet of rats: black cumin seed (Nigella sativa) and turmeric (Curcumin). J Anim Vet Advan 2012;11:2013-9.
22. Ojiako OA, Chikezie PC, Ogbuji AC. Comparative hypoglycemic activities of aqueous and ethanolic extracts of four medicinal plants (Acanthus montanus, Asystasia gangetica, Emilia coccinea and Hibiscus rosasinensis) in type I diabetic rats. J Inter Ethnopharmacol 2015;4:228?33.
23. Mallick N, Khan RA. Antihyperlipidemic effects of Citrus sinensis, Citrus paradisi, and their combinations. J Pharm Bioallied Sci 2016;8:112–8.
24. Kumari K, Augusti K. Lipid-lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet-fed rats. J Ethnopharmacol 2007;109:367-71.
25. Tiss A, Carriere F, Verger R. Effects of gum arabic on lipase interfacial binding and activity. Anal Biochem 2001;294:36-43.
26. Vergeer M, Holleboom AG, Kastelein JJ, Kuivenhoven JA. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J Lipid Res 2010;51:2058-73.
27. Jiang H, Solyom AM, Timmermann BN, Gang DR. Characterization of gingerol related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rap Comm Mass Spectro 2005;19:2957-64.
28. Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE 2 production. Phytochemistry 2004;65:1937-54.
29. Bilehal DC, Sung DD, Kim YH. Influence of the solvent, hydrodistillation–headspace solvent microextraction and composition of korean ginger. Food Anal Meth 2011;4:84-9.
30. Jolad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE 2 production. Phytochemistry 2005;66:1614-35.
31. Jiang H, Solyom AM, Timmermann BN, Gang DR. Characterization of gingerol related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rap Comm Mass Spectro 2005;19:2957-64.
32. Jiang H, Timmermann BN, Gang DR. Characterization and identification of diarylheptanoids in ginger (Zingiber officinale Rosc.) using high-performance liquid chromatography/ electrospray ionization mass spectrometry. Rap Comm Mass Spectro 2007;21:509-18.
33. Kalveniene Z, Velziene S, Ramanauskiene K, Savickas A, Ivanauskas L, Brusokas V. The qualitative analysis of ethanol extracts of herbal raw materials by the method of high-pressure liquid chromatography. Polish Pharm Soc 2007;64:327-33.
34. Ghasemzadeh A, Jaafar HZ, Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010a;15:4324-33.
35. Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high-performance liquid chromatography method. Molecules 2010b;15:6231-43.
36. Bhargava S, Dhabhai K, Batra A, Sharma A, Malhotra B. Zingiber officinale: Chemical and phytochemical screening and evaluation of its antimicrobial activities. J Chem Pharm Res 2012;4:360-4.
37. Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE 2 production. Phytochemistry 2004;65:1937-54.
38. He XG, Bernart MW, Lian LZ, Lin LZ. High-performance liquid chromatography-electrospray mass spectrometric analysis of pungent constituents of ginger. J Chroma A 1998;796:327-34.
39. Soininen TH, Jukarainen N, Soininen P, Auriola SO, Julkunen Tiitto R. Metabolite profiling of leek (Allium porrum L) cultivars by 1H NMR and HPLC–MS. Phytochem Anal 2014;25:220-8.
40. Mnayer D, Fabiano Tixier AS, Petitcolas E, Hamieh T, Nehme N, Ferrant C, et al. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014;19:20034-53.
41. Rose P, Whiteman M, Moore PK, Zhu YZ. Bioactive S-alk (en) yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 2005;22:351-68.
42. Bernaert N, De Clercq H, Van Bockstaele E, De Loose M, Van Droogenbroeck B. Antioxidant changes during postharvest processing and storage of leek (Allium ampeloprasum var. porrum). Postharvest Bio Tech 2013;86:8-16.
43. Proteggente AR, Pannala AS, Paganga G, Buren LV, Wagner E, Wiseman S, et al. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res 2002;36:217-33.
44. Radovanovic B, Mladenovic J, Radovanovic A, Pavlovic R, Nikolic V. Phenolic composition, antioxidant, antimicrobial and cytotoxic activities of Allium porrum L.(Serbia) extracts. J Food Nut Res 2015;3:564-9.
45. Schmidt JS, Nyberg NT, Staerk D. Assessment of constituents in Allium by multivariate data analysis, high-resolution ?-glucosidase inhibition assay and HPLC-SPE-NMR. Food Chem 2014;161:192-8.
46. Fattorusso E, Lanzotti V, Magno S, Taglialatela Scafati O. Sapogenins of Allium porrum L. J Agric Food Chem 1998;46:4904-8.
47. Fattorusso E, Lanzotti V, Taglialatela Scafati O, Cicala C. The flavonoids of leek, Allium porrum. Phytochemistry 2001;57:565-9.
48. Tsiaganis MC, Laskari K, Melissari E. Fatty acid composition of Allium species lipids. J Food Comp Anal 2006;19:620-7.
Statistics
58 Views | 7 Downloads
Citatons
How to Cite
MINA, S. A., A. M. A. EL-MAKSOUD, H. S. MOHAMMED, and M. A. FOUAD. “STUDY OF THE ANTI-HYPERLIPIDEMIC EFFECT OF THE COMBINED ADMINISTRATION OF THREE NATURAL EXTRACTS IN A POLOXAMER-407 HYPERLIPIDEMIC MODEL AND THEIR LC-ESI-MS/MS2 AND HPLC PROFILING”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 12, no. 9, July 2020, pp. 29-35, doi:10.22159/ijpps.2020v12i9.38385.
Section
Original Article(s)