Brain Targeting of Doxorubicin SLNs Via Nasal Route

  • Virag Shah Hemchandrachrya North Gujarat University
  • PATEL JAYVADAN K Nootan Pharmacy College, SPCE Campus, Visnagar, Gujarat 384315
  • SOLANKI HIMANSHU K. SSR college of Pharmacy, Sayli road, Silvassa, UT of DNHDD-396230


Objective: The goal of the current study was to investigate the possible use of solid lipid nanosuspension (SLNs) as a drug delivery method to boost doxorubicin (DOX) brain-targeting performance after intranasal (i.n.) administration.

Method: 33   factorial   design was iapplied for optimization by using lipid   concentration,   surfactant concentration   and   High-speed   homogenizer   (HSH)   stirring time as dependent variables and their  effect   were   observed   on   particles   size,   Polydispersity   index   (PDI) and   entrapment   efficiency.

Result: With the composition of Compritol® 888 ATO (4.6 % w/v), tween 80 (1.9 % w/v) and HSH stirring time, the optimized formula DOX-SLNs prepared (10 min). Particle isize, PDI, zeta ipotential, entrapment efficiency, percent in vitro release, were found to be 167.47 ± 6.09 nm, 0.23 ± 0.02, 24.1 mV, 75.3 ± 2.79, and 89.35 ± 3.27 percent in 24 h, respectively, for optimized formulation (V-O). No major changes in particle size, zeta potential, and entrapping efficiency were found in stability studies at 4 ± 2 °C (refrigerator) and 25 ± 2 °C/60 ± 5% RH   up   to   3   months.

Conclusion: Following the non-invasive nose-to-brain drug delivery, which is a promising therapeutic strategy, the positive findings confirmed the current optimized DOX-loaded SLNs formulation.

Keywords: Solid lipid Nanosuspension; Homogenization and ultrasonication; Characterization; Factorial design; Nose to brain delivery.


Download data is not yet available.


[1]. A. Zubareva, T. Shcherbinina, V. P.Varlamov, & E. Svirshchevskaya, Biodistribution of doxorubicin-loaded succinoyl chitosan nanoparticles in mice injected via intravenous or intranasal route, PCACD. 19 (2014) 145–154. https://doi.org/10.15259/pcacd.19.18.
[2]. S.V. Mussi, R.C. Silva, M.C. de Oliveira, C.M. Lucci, R.B. de Azevedo, L.A.M. Ferreira, New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles, European Journal of Pharmaceutical Sciences. 48 (2013) 282–290. https://doi.org/10.1016/j.ejps.2012.10.025.
[3]. M.S. Oliveira, S.V. Mussi, D.A. Gomes, M.I. Yoshida, F. Frezard, V.M. Carregal, L.A.M. Ferreira, ?-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles, Colloids and Surfaces B: Biointerfaces. 140 (2016) 246–253. https://doi.org/10.1016/j.colsurfb.2015.12.019.
[4]. P. Tardi, N. Boman, P. Cullis, Liposomal Doxorubicin, Journal of Drug Targeting. 4 (1996) 129–140. https://doi.org/10.3109/10611869609015970.
[5]. P. Xiong, A. Ding, Z. Su, G. Shen, Y. Chen, S. Zhang, The efficacy and hyperthermic release of doxorubicin from liposomal doxorubicin hydrochloride in rabbit VX2 tumours, International Journal of Hyperthermia. 31 (2015) 900–908. https://doi.org/10.3109/02656736.2015.1078502.
[6]. S. Khatak, H. Dureja, Structural Composition of Solid Lipid Nanoparticles for Invasive and Noninvasive Drug Delivery, CNM. 2 (2018) 129–153. https://doi.org/10.2174/2405461503666180413160954.
[7]. S. Patel, S. Chavhan, H. Soni, A.K. Babbar, R. Mathur, A.K. Mishra, K. Sawant, Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route, Journal of Drug Targeting. 19 (2011) 468–474. https://doi.org/10.3109/1061186x.2010.523787.
[8]. M. Shah, K. Pathak, Development and Statistical Optimization of Solid Lipid Nanoparticles of Simvastatin by Using 23 Full-Factorial Design, AAPS PharmSciTech. 11 (2010) 489–496. https://doi.org/10.1208/s12249-010-9414-z.
[9]. M.S. Gambhire, M.R. Bhalekar, V.M. Gambhire, Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design, Braz. J. Pharm. Sci. 47 (2011) 503–511. https://doi.org/10.1590/s1984-82502011000300008.
[10]. M. Yasir, U.V.S. Sara, Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation, Acta Pharmaceutica Sinica B. 4 (2014) 454–463. https://doi.org/10.1016/j.apsb.2014.10.005.
[11]. U. Bilati, E. Allémann, E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, European Journal of Pharmaceutical Sciences. 24 (2005) 67–75. https://doi.org/10.1016/j.ejps.2004.09.011.
[12]. Y. Dong, W.K. Ng, S. Shen, S. Kim, R.B.H. Tan, Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers, Colloids and Surfaces B: Biointerfaces. 94 (2012) 68–72.
[13]. P. Costa, J.M. Sousa Lobo, Modeling and comparison of dissolution profiles, European Journal of Pharmaceutical Sciences. 13 (2001) 123–133. https://doi.org/10.1016/s0928-0987(01)00095-1.
[14]. L. Gan, Y.-P. Gao, C.-L. Zhu, X.-X. Zhang, Y. Gan, Novel pH-Sensitive Lipid-Polymer Composite Microspheres of 10-Hydroxycamptothecin Exhibiting Colon-Specific Biodistribution and Reduced Systemic Absorption, Journal of Pharmaceutical Sciences. 102 (2013) 1752–1759. https://doi.org/10.1002/jps.23499.
[15]. P. Blasi, S. Giovagnoli, A. Schoubben, C. Puglia, F. Bonina, C. Rossi, M. Ricci, Lipid nanoparticles for brain targeting I. Formulation optimization, International Journal of Pharmaceutics. 419 (2011) 287–295. https://doi.org/10.1016/j.ijpharm.2011.07.035.
[16]. S. Bose, Y. Du, P. Takhistov, B. Michniak-Kohn, Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems, International Journal of Pharmaceutics. 441 (2013) 56–66. https://doi.org/10.1016/j.ijpharm.2012.12.013.
[17]. M. Rajkumar, S.B. Bhise, Carbamazepine-Loaded Porous Microspheres for Short-Term Sustained Drug Delivery, Journal of Young Pharmacists. 2 (2010) 7–14. https://doi.org/10.4103/0975-1483.62206.
[18]. Z. Rahman, A.S. Zidan, M.A. Khan, Non-destructive methods of characterization of risperidone solid lipid nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics. 76 (2010) 127–137. https://doi.org/10.1016/j.ejpb.2010.05.003.
[19]. S. Lombardi Borgia, M. Regehly, R. Sivaramakrishnan, W. Mehnert, H.C. Korting, K. Danker, B. Röder, K.D. Kramer, M. Schäfer-Korting, Lipid nanoparticles for skin penetration enhancement—correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy, Journal of Controlled Release. 110 (2005) 151–163. https://doi.org/10.1016/j.jconrel.2005.09.045.
[20]. S. Cai, Q. Yang, T.R. Bagby, M.L. Forrest, Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles, Advanced Drug Delivery Reviews. 63 (2011) 901–908. https://doi.org/10.1016/j.addr.2011.05.017.
[21]. G.S. Banker, Optimization technique in pharmaceutical formulation and processing, in: Modern Pharmaceutics, CRC Press, 2002.
[22]. Hooda, A. Nanda, M. Jain, V. Kumar, P. Rathee, Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software, International Journal of Biological Macromolecules. 51 (2012) 691–700. https://doi.org/10.1016/j.ijbiomac.2012.07.030.
[23]. M. Aoki, T.A. Ring, J.S. Haggerty, Analysis and Modeling of the Ultrasonic Dispersion Technique, 2 (1987) 209–212. https://doi.org/10.1111/j.1551-2916.1987.tb00082.x.
[24]. J. Malakar, A.K. Nayak, D. Pal, Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion–gelation method, International Journal of Biological Macromolecules. 50 (2012) 138–147. https://doi.org/10.1016/j.ijbiomac.2011.10.001.
[25]. L. Harivardhan Reddy, R.S.R. Murthy, Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation, AAPS PharmSciTech. 6 (2005) E158–E166. https://doi.org/10.1208/pt060224.
[26]. H. Thakkar, J. Desai, M. Parmar, Application of Box-Behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil, Asian J Pharm. 8 (2014) 81. https://doi.org/10.4103/0973-8398.134921.
[27]. R.K. Subedi, K.W. Kang, H.-K. Choi, Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin, European Journal of Pharmaceutical Sciences. 37 (2009) 508–513. https://doi.org/10.1016/j.ejps.2009.04.008.
[28]. C.-Y. Zhuang, N. Li, M. Wang, X.-N. Zhang, W.-S. Pan, J.-J. Peng, Y.-S. Pan, X. Tang, Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability, International Journal of Pharmaceutics. 394 (2010) 179–185. https://doi.org/10.1016/j.ijpharm.2010.05.005.
[29]. G. Abdelbary, R.H. Fahmy, Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization, AAPS PharmSciTech. 10 (2009) 211–219. https://doi.org/10.1208/s12249-009-9197-2.
[30]. P. Arora, S. Sharma, S. Garg, Permeability issues in nasal drug delivery, Drug Discovery Today. 7 (2002) 967–975. https://doi.org/10.1016/s1359-6446(02)02452-2.
[31]. T. Furubayashi, D. Inoue, A. Kamaguchi, Y. Higashi, T. Sakane, Influence of Formulation Viscosity on Drug Absorption Following Nasal Application in Rats, Drug Metabolism and Pharmacokinetics. 22 (2007) 206–211. https://doi.org/10.2133/dmpk.22.206.
[32]. A.S. Joshi, H.S. Patel, V.S. Belgamwar, A. Agrawal, A.R. Tekade, Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation, J Mater Sci: Mater Med. 23 (2012) 2163–2175. https://doi.org/10.1007/s10856-012-4702-7.
[33]. G.A. Shazly, Ciprofloxacin Controlled-Solid Lipid Nanoparticles: Characterization, In Vitro Release, and Antibacterial Activity Assessment, BioMed Research International. 2017 (2017) 1–9. https://doi.org/10.1155/2017/2120734.
19 Views | Downloads
How to Cite
Shah, V., D. J. Patel, and D. Solanki. “A OPTIMIZATION AND CHARACTERIZATION OF DOXORUBICIN LOADED SOLID LIPID NANOSUSPENSION FOR NOSE TO BRAIN DELIVERY USING DESIGN EXPERT SOFTWARE: Brain Targeting of Doxorubicin SLNs Via Nasal Route”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 13, no. 5, Mar. 2021, doi:10.22159/ijpps.2021v13i5.41137.
Original Article(s)